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Background

Data processing

“Looked but failed to see” (LBFTS) incidents are motor vehicle collisions where the 
driver reports looking, but fails to see the collision object (Treat et al., 1980)

Multiple mechanisms have been proposed to account for such incidents, including 
change blindness, which is the failure to detect a salient change when that change 
occurs during a brief disruption (Jensen et al., 2011)

One population of individuals who may be more susceptible to change blindness are 
those with homonymous visual field loss (HVFL)

- a loss of vision in the same parts of the visual field in both eyes caused by stroke            
or traumatic brain injury

Individuals with HVFL can compensate for their visual field loss by scanning towards 
their blind visual field (Gassel & Williams, 1963), but need to scan at least as far as the 
object of interest in order to see it

Analysis of gaze tracking data suggested that some blind side detection failures of 
individuals with HVFL may have resulted from a failure of visual awareness (Bowers et 
al., 2015)

People with HVFL may be more prone to failures of visual awareness than people with 
normal vision (NV) because there are additional demands placed on memory to 
represent information in the blind portion of the visual field and they may experience 
more profound disruptions in vision while scanning than those with NV

We tested this hypothesis in a driving simulator study with gaze-triggered changes
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Results – change blindness rates

Other results of interest

General Discussion
We found significantly more change blindness in those with HVFL than those with 
NV, supporting our hypothesis

- For those with HVFL, there was significantly more change blindness in 
changes that occurred on the blind than seeing sides

There were wide individual differences in change blindness rates, which is a 
characteristic of the literature on detection performance in individuals with HVFL

This paradigm produced change blindness for changes in the blind and seeing 
portions of the visual field, suggesting that this paradigm could be used in 
measuring change blindness events while driving

Future versions of this paradigm will utilize pedestrians that change from “non-
hazardous” to “hazardous” to see if driving relevance influences detection

Potential limitations: 
- Low sample size limits interpretation of within-subject comparisons
- Critical pedestrians may have been too distinct from other objects in the

virtual environment (given lack of eccentricity and condition effects)

Contact: garrett_swan@meei.Harvard.edu, No conflicts of interest, Funded by: R01-EY025677

Participants
HVFL, n = 11 NV, n = 10 p-value

Current driver, n (%) 3 (27%) 7 (88%) 0.09

Male, n (%) 9 (82%) 5 (50%) 0.18

Age, y, median (IQR) 50.0 (35.0) 55.0  (35.0) 0.32

Race, n (%) reported White 11 (100%) 5 (50%) 0.01

Visual Acuity (LogMAR), mean (SD)

Snellen equivalent

-0.06 (0.1)

20/17

-0.03 (0.07) 

20/19

0.36

Left HVFL, n (%) 8 (73%) NA NA

MoCA score, mean (SD) 26.7 (2.3) NA NA

Hemianopia caused by stroke, n (%) 5 (45%) NA NA

Years since onset, median (IQR) 9.6 (11.2) NA NA

LogMAR – Logarithm of the Minimum Angle of Resolution
MoCA – Montreal Cognitive Assessment (Naseddine et al., 2005)
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Reaction time as a function of vision group:
- Not significant (1.1s vs 1.02s), b=-0.04, se=0.06, t=0.74, p=0.46      
- Blind side RT was slower than seeing side (1.43s vs 0.98), p = 0.03

Change blindness rate as a function of pedestrian eccentricity:
- Not significant, b=0.02, se=0.02, t=0.9, p=0.37

Change blindness rate as a function of condition:
- Not significant, ps > 0.27

Change blindness rate was not correlated with age (ps > 0.26), visual acuity (ps > 
0.22), nor scores on the MoCA (p = 0.85)

Scenarios

Examples of horizontal gaze (blue) and eccentricity of pedestrians (black) and cross 
traffic (green). These examples correspond to a participant with left HVFL, so the blind 
visual field (gray) is to the left of gaze

We only analyzed events if the location of the change was visible before and after the 
change occurred

- Left panel: change was detected (red dotted line)
- Middle panel: change was not detected
- Right panel: the location of the change was never visible before the change 

occurred, so the event was omitted

We utilized 3 change conditions:

(A) No pedestrian at the 
intersection, then pedestrian 
appears near the crosswalk

(B) Pedestrian far from the 
crosswalk, then pedestrian 
appears near the crosswalk

(C) Crowd far from the 
crosswalk, then pedestrian 
appears near the crosswalk.

In all three conditions, the 
critical pedestrian (in red) 
appeared in the same location

Pedestrians were triggered to 
change based on the following 
criteria:

(1) At certain intersections, a car 
approached from the 
opposite side of intersection

(2) Once gaze fell within 1 
degree of the car for 100ms, 
then the pedestrian was 
triggered

24 gaze-triggered 
pedestrians, 

equally left and right

16 pedestrians triggered 
when driver was within 

40m of pedestrian, 
equally left and right

12 catch-events, e.g., 
pedestrian standing at 

intersection, cross traffic 
but no pedestrian, etc

Change blindness rates were significantly greater in individuals with HVFL vs NV
- Average HVFL = 18.0% (SEM = 4.7%) vs. NV = 9.4% (SEM = 3.2%)

b=2.4, se=0.9, t=2.7, p=0.007

Significantly more change blindness for changes on the blind than seeing side
- Average = 31.0% (SEM = 9.6%) vs seeing side average = 12.4% (SEM = 4.1%)

b=1.3, se=0.49, t=2.6, p=0.01

Driving Simulator

Participants used a custom driving simulator with a Tobii eye tracker tracking gaze to 
drive through a city of intersections with buildings, cross traffic, and pedestrians 

Participants detected pedestrians that suddenly appeared or changed location
- On the right, participants should only make a horn press if they first notice no 

pedestrian (top right) and then notice the pedestrian appearance (bottom right)

Pedestrian Critical 
pedestrian Crowd
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field

Gaze Participant’s 
car Cross traffic Critical

Pedestrian

(1) No pedestrian, cross 
traffic approaches

(2) Fixating on cross 
traffic, pedestrian appears
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Right
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The effects of simulated acuity and contrast sensitivity 
impairments on detection of pedestrian hazards

• Owsley, C., McGwin Jr, G. (2010). Vision and driving. Vision Research, 50(23), 2348-2361
• Peli, E. (2008). Driving with low vision: who, where, when, and why. Albert and Jokobiec’s Principles 

and Practice of Ophthalmology. Elsevier: 4(2008): 5369-5376
• Owsley, C., Stalvey, B. T., Wells, J., Sloane, M. E., McGwin, G. (2001). Visual risk factors for crash 

involvement in older drivers with cataracts. Archives of Ophthalmology, 119(6), 881-887
• Wood, J., Troutbeck (1994). Effect of visual impairment on driving. Human Factors, 36(4), 476-487

Background

Results from Experiment 1

Driving is a highly visual task

Vision impairment may adversely affect safe driving (Owsley & McGwin 2010)

Visual acuity (VA) is the predominant measure used by states to determine 

whether someone is visually fit to drive (Peli 2008)

Eye disease may affect other aspects of vision while not reducing VA below state 

requirements for driving

- Cataracts, diabetes, and macular degeneration reduce both VA and CS

Contrast sensitivity (CS) is not measured by any state, yet has been shown to be a 

predictor of crash risk (Owsley et al., 2001)

- Better CS is a predictor of driving ability following cataract surgery (Wood & 

Carberry, 2006) and in drivers with macular diease(Alberti et al., 2014)

Studies utilizing simulated vision impairment have found that a large VA reduction 

is needed in order to produce a similar decrement in driving performance to a 

relatively small CS reduction (Higgins & Wood, 2005)

We explored the effect of simulated CS and VA reduction on 
reaction time and the proportion of timely responses to hazards

- Timely response = given the speed of the car and the time of detection, 

could the driver safely brake to avoid a collision?

Hypothesis: CS predicts detection performance better than VA

Garrett Swan1, Maha Shahin2, Jacqueline Albert3, Joseph Herrmann4, Alex Bowers1
1 Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School

2 Ophthalmology, Mansoura University
3 Southern California College of Optometry, Marshall B. Ketchum University
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General methods

Results from Experiment 2

Experiment 2: Effects of VA and CS losses alone

Results from Experiment 2 cont.

Combining Experiment 1 and Experiment 2

General Discussion

Participants drove in a highway setting that included oncoming traffic and 

curves in a high-fidelity driving simulator (FAAC Corp., Ann Arbor, MI)

- Participants completed two practice drives to acclimate to the simulator

12 total pedestrians appeared equally to the left or right of the driver and ran 

toward the road along a collision course with the participant’s vehicle

- Pedestrians appeared when the driver was 5s away

Participants were instructed to drive normally, maintain a speed of 100kph, and 

press the horn as soon as they saw a pedestrian

As the strength of the diffusing filter increased, 

RT significantly  increased

and the proportion of timely responses was significantly reduced

However, given that both CS and VA were reduced, 

the individual effects of either a CS or VA reduction alone were not addressed

A VA loss alone did not significantly increase RT nor 

significantly reduce the proportion of timely responses

However, a CS loss alone did significantly increase RT and 

marginally reduced the proportion of timely responses

When comparing between the four visual impairment conditions, 
there was no significant interaction between VA and CS for either detection measure (p > .6)

Goal of Exp. 1:
How do simulated VA and CS 
deficits affect RT and timeliness?
Diffusing filters (Bangerter) were used 

to create CS reductions with VAs still 

within legal limits for driving 

(unrestricted or restricted license)

Goals of Exp. 2:
1) How does simulated VA 
alone affect RT and timeliness?
2) How does simulated CS 
alone affect RT and timeliness?
Blur (positive) lenses were used to 

reduce VA without reducing CS

Blur lenses were selected to match the 

VA of the High and Mid diffusing filters In Experiment 1, a simulated VA and CS reduction impaired RT and timeliness

In Experiment 2, a CS reduction alone significantly impaired RT and timeliness, 

while a VA reduction alone had minimal effects

While there was no significant interaction between VA and CS on RT and 

timeliness, the model that best predicted behavior included VA and CS

These results are congruent with other studies which have reported that simulated 

CS reductions impair driving performance to a greater extent than simulated VA 

reductions (Higgins, Wood, & Tait, 1998)

Our findings suggest that CS, as well as VA, should be assessed when measuring 
vision for driving licensure

- This is especially true in eye diseases such as cataracts where VA may be 

within the legal limit, but CS is reduced

Filters had no effects on detection rate or car speed at the time of the horn

As in Experiment 1, neither the filters nor the blur lenses had any significant 

effects on detection rates or car speed 

• Wood, J. M., Carberry, T. P. (2006). Bilateral cataract surgery and driving performance. British 
Journal of Ophthalmology, 90(10), 1277-1280.

• Alberti, C. F., Horowitz, T., Bronstad, P. M., Bowers, A. R. (2014). Visual attention measures 
predict pedestrian detection in central field loss: a pilot study. PloS one, 9(2), e89381

• Higgins, K. E., Wood, J. M. (2005). Predicting components of closed road driving performance 
from vision tests. Optometry and Vision Science, 82(8), 647-656

Better 
CS

Better VA

NV = normal vision
Low = low impairment
Mid = medium impairment 
High = high impairment 15 subjects, age = 26.9 (4.3) years, 

6 males, 2+ years driving experience 

NV Low Mid High
Prop. pedestrians detected 0.99 (0.02) 1.00 (0.00) 0.99 (0.02) 0.98 (0.03)
Car speed at horn press (kph) 93.47 (2.04) 93.05 (1.89) 92.89 (2.01) 93.73 (2.06)

Mean (SEM)

15 new subjects, age = 31.3 (10) years, 
12 males, 2+ years driving experience

NV MidDS HighDS Mid High
Prop. Pedestrians detected 1.00 (0.00) 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 0.99 (0.001)
Car speed at horn press (kph) 91.27 (1.72) 90.26 (1.94) 89.49 (1.78) 90.92 (1.97) 90.02 (2.01)

ns p > .05
* p < .05
*** p < .001

To determine whether VA and/or CS is the best predictor of RT and proportion of 

timely responses, model comparison was used for 4 regression models: 

HighDS
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Experiment 1: Effects of VA and CS losses combined
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CS alone predicted RT (ΔBIC = 20.6) and timeliness (ΔBIC = 4.4) better than VA 

alone, and CS alone was not different from the best model (VS + CS, ΔBIC < 2)
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Does an unexpected task reset the contents 
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- Participants in both groups had to read the same unexpected question 
and type the letter
- However, participants in the same-attribute group had significantly better 
accuracy on the surprise trial than the different-attribute group

Were there differences in 
reaction time on the surprise 
trial between the groups?

There were no significant 
differences in RT
- Exp. 1 (t (78) = .68, p =  .25) 
- Exp. 2 (t (78) = 1.3, p =  .11 )

Experiment 1

Experiment 2
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Results from Experiment 1

Results from Experiment 2

- These results replicated Experiment 1 using color instead of identity
- Participant were significantly more accurate in recalling color on the 

surprise trial in the same-attribute group than the different-attribute 
group

Same attribute group N = 40

Pre-surprise trials 1 to 11
- The same-attribute group reported color with 4AFC
- The different attribute group reported identity with 4AFC

Surprise trial 12 and Control trials 13 to 16
- Both groups recalled the color of the target letter
- Next, both groups reported the location and then identity with 4AFC

Pre-sur Surprise Contr. 1 Contr. 2 Contr. 3 Contr. 4
Location N/A 40%2 83% 90% 90% 95%

Color N/A 35%3 85% 85% 75% 83%
Identity 91% 75%1 85% 95% 90% 88%

Pre-sur Surprise Contr. 1 Contr. 2 Contr. 3 Contr. 4
Location N/A 78%2 93% 88% 93% 98%
Color 83% 60%3 83% 80% 90% 88%
Identity N/A 50%1 80% 75% 93% 83%

Pre-sur Surprise Contr. 1 Contr. 2 Contr. 3 Contr. 4
Location N/A 43%2 68% 80% 78% 90%

Color 83% 68%1 80% 85% 75% 83%
Identity N/A 45%3 55% 73% 63% 73%

Pre-sur Surprise Contr. 1 Contr. 2 Contr. 3 Contr. 4
Location N/A 63%2 78% 73% 88% 85%
Color N/A 43%1 65% 73% 88% 80%
Identity 85% 53%3 70% 78% 75% 78%

The results  on the surprise trial of both experiments were compared 
using a log linear analysis

There was a significant effect of group (G2 = 11.5, p < .005), but no 
significant effect of experiment (G2 = .9, p = .33)

The combined analysis suggests that these results are a general 
property of memory and not a function of the specific attributes 
retrieved on the surprise trial
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Results show that attributes already stored in visual working memory 
can be retrieved despite interference from an unexpected task

Results support fractionation of working memory into different stores 
(e.g. Baddeley, 2003) because reading did not strongly affect memory 
responses on the surprise trial

Results show the content-addressability of memory, which is the ability 
to access memories by their content (e.g. Swan & Wyble, 2014) even 
with an incorrect expectation of how information will be retrieved

Results also show that the inability to report information on the surprise 
trial is influenced by the strength of encoding (Chen & Wyble, 2016) and 
not merely forgetting

Surprise question

Superscript is the order of question

* χ2, p < .05

* 

* 

* 

* 

Diff.
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Same
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Same
Exp. 2

Diff.
Exp. 2

Median

Se
co

nd
s

Reaction time

Swan, G., Wyble, B., & Chen, H. (2017). Working memory representations persist in the 
face of unexpected task alterations. Attention, Perception, & Psychophysics, 1-7.

Combined results

In all trials, participants were searching for a 
target letter among 3 digits

Pre-surprise trials 1 to 11
- The same-attribute group reported the identity 

with 4 alternative forced choice (4AFC)
- The different-attribute group reported the 

color with 4AFC

Surprise trial 12
- Both groups recalled the identity of the letter
- Next, both groups reported location of the 

letter with 4AFC
- Lastly, both groups reported the color of the 

letter with 4AFC

Control trials 13 to 16
- Same as surprise

trials

Visual working memory (VWM) describes the ability to encode, store, and 
retrieval  information

Many studies have explored the contents of VWM by asking participants to 
report unexpected information in a surprise test

- Inattentional blindness (Mack & Rock, 1998)
- Attribute amnesia (Chen & Wyble, 2015)

Errors associated with these tasks are attributed to either failure of perception/ 
encoding (Mack & Rock, 1998) or forgetting (Wolfe, 1999)

Forgetting may be exacerbated by the demands of understanding and 
responding to a unexpected task

- Surprise tests often have increased reaction time

Does a surprise trial reset the contents of VWM? (Swan, Wyble, & Chen, 2017)
- We compared surprise trial performance for an attribute that participants   

expected to report versus an attribute they did not expect to report

Diff. attribute on surprise trial

Same attribute on surprise trial Diff. attribute on surprise trial

General Discussion

Superscript is the order of question

* χ2, p < .05

Diff. attribute group N = 40

Same attribute group N = 40
Diff. attribute group N = 40

gsp.swan@gmail.com
bwyble@gmail.com
psychenhui@gmail.com
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Testing Predictions of the 
Binding Pool model
Garrett Swan and Brad Wyble
Pennsylvania State University

BCS-1331073

Visual working memory (VWM) describes the ability to encode, 
store, and retrieval visual information

Testing predictions of models of VWM motivates new research and 
tests the model’s validity
• Correct predictions = supports model
• Incorrect predictions = suggests model needs to be revised or 

replaced

Here, we tested published predictions of the Binding Pool model

Prediction 1: Forgetting one object will increase the 
precision of another object in memory
• Directed forgetting

Results from Williams et al. (2013) supported this prediction

Prediction 2: Storing more features reduces memory 
precision

Prediction 5: The similarity of two objects will determine the 

magnitude of the bias of a third object’s response distribution

Prediction 6: Participants should have high confident 
retrieval errors

General discussion:
Predictions of the Binding Pool model were tested:

• Prediction 1: provides an account of directed forgetting
• Prediction 2: supports the model’s mechanisms for encoding 

objects and features
• Prediction 3: suggest opponent colors interfere less in memory
• Prediction 3 and 5: failure to support these predictions indicate 

that the decoding of retrieved type activity is incorrect
• Prediction 4: failure to support this prediction indicates that 

repetitions are coded differently
• Idea: Repetitions are bound to the same token

• Prediction 6: results suggest that the model’s current 
implementation of confidence could be improved

• This will likely change as a result of how type activity is 
decoded in future iterations of the model

• Bays, P. M., Catalao, R. F., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. 
Journal of Vision, 9(10), 7-7

• Swan, G., & Wyble, B. (2014). The binding pool: A model of shared neural resources for distinct items in visual working memory. 
Attention, Perception, & Psychophysics, 76(7), 2136-2157.

• Swan, G., Collins, J., & Wyble, B. (2016). Memory for a single object has differently variable precisions for relevant and irrelevant 
features. Journal of vision, 16(3), 32-32.

• Williams, M., Hong, S. W., Kang, M. S., Carlisle, N. B., & Woodman, G. F. (2013). The benefit of forgetting. Psychonomic bulletin & 
review, 20(2), 348-355.
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A memory is the 
serial conjunction of 
a type and a token 
node

First, a cue is used 
to retrieve a token 
node

Next, the cue and 
retrieved token node 
are used to retrieve 
the desired feature

Encoding Retrieval stage 1 Retrieval stage 2

Results from Swan, Collins, and Wyble (2016) supported this prediction

Prediction 3: Similarity in feature space affects memory 
precision
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Results qualitatively supports the prediction for precision, but the 
model overestimates the magnitude

Results fail to support the model’s prediction

• Precision for 3 repeated objects was better than a single object
• Found the same results using sequential presentation

The results do show a bias towards non-targets
However, the results fail to support the model’s prediction
• The model predicts that repetitions pull significantly more 

than non-repetitions
• Found same result using luminance instead of color

Methodology Results/Simulation
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Methodology Results

Why? By ‘forgetting’ or deleting memory M2, there is less noise during 
the retrieval of M1, but also less binding pool neurons coding for M1

Why? Adding features increases the amount of noise in the binding pool, 
which means less binding pool neurons to represent that object 

Why? The ‘n’ shaped function is caused by how retrieved type activity is 
decoded (i.e. averaging activation vectors) 

Why? Like Pred. 3, this is caused by how retrieved type activity is 
decoded (i.e. averaging activation vectors)

Why? Some retrieval errors are caused by incorrectly retrieving a token 
bound to a distractor, resulting in a high confident swap

Methodology Results

These results suggest that some participants do guess and make retrieval 
errors despite high levels of confidence
• However, there isn’t a u-shaped function for Pnt , which fails to support 

the prediction of the model

Mean 
vector 
angle

N = 150

N = 53
Trials = 150

N = 24
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Prediction 4: Three repetitions are less precise than a 
single object
Why? Each repeated object is bound to its own token node, which 
increases the amount of noise in the binding pool

Binding Pool model 2.0
• Token nodes index stored representations 

akin to object-files

• Types represent a stimulus’s features (e.g.

color, orientation)

• The binding pool is a shared resource 

pool where stimuli are stored as 

distributed representations

(based on Swan & Wyble, 2014):
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‘x’ = starting luminance
2nd and 3rd #s = other presented colors

• Participants adjusted the location 
of two bars to include the actual 
color 90% of the time

• Data was separately binned into 
equal percentiles

• Data fit using mixture model (Bays 
et al., 2009)
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Testing Predictions of the 
Binding Pool model
Garrett Swan and Brad Wyble
Pennsylvania State University
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Visual working memory (VWM) describes the ability to encode, 
store, and retrieval visual information

Testing predictions of models of VWM motivates new research and 
tests the model’s validity
• Correct predictions = supports model
• Incorrect predictions = suggests model needs to be revised or 

replaced

Here, we tested published predictions of the Binding Pool model

Prediction 1: Forgetting one object will increase the 
precision of another object in memory
• Directed forgetting

Results from Williams et al. (2013) supported this prediction

Prediction 2: Storing more features reduces memory 
precision

Prediction 5: The similarity of two objects will determine the 

magnitude of the bias of a third object’s response distribution

Prediction 6: Participants should have high confident 
retrieval errors

General discussion:
Predictions of the Binding Pool model were tested:

• Prediction 1: provides an account of directed forgetting
• Prediction 2: supports the model’s mechanisms for encoding 

objects and features
• Prediction 3a, 4 and 5: failure to support these predictions 

indicate that the decoding of retrieved type activity is incorrect
• Prediction 3b: failure to support this prediction indicates that 

repetitions are coded differently
• Idea: Repetitions are bound to the same token

• Prediction 6: the marginal significance suggests the model’s 

current implementation of confidence could be improved

• This will likely change as a result of how type activity 
is decoded in future iterations of the model

• Bays, P. M., Catalao, R. F., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. 
Journal of Vision, 9(10), 7-7

• Swan, G., & Wyble, B. (2014). The binding pool: A model of shared neural resources for distinct items in visual working memory. 
Attention, Perception, & Psychophysics, 76(7), 2136-2157.

• Swan, G., Collins, J., & Wyble, B. (2016). Memory for a single object has differently variable precisions for relevant and irrelevant 
features. Journal of vision, 16(3), 32-32.

• Williams, M., Hong, S. W., Kang, M. S., Carlisle, N. B., & Woodman, G. F. (2013). The benefit of forgetting. Psychonomic bulletin & 
review, 20(2), 348-355.
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A memory is the 
serial conjunction of 
a type and a token

First, a cue is used 
to retrieve a token

Next, the cue and 
retrieved token are 
used to retrieve the 
desired feature

Encoding Retrieval stage 1 Retrieval stage 2

Results from Swan, Collins, and Wyble (2016) supported this prediction

Prediction 3a and 4: Similarity in feature space affects 
memory precision and confidence
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Results qualitatively supports the prediction for precision, but the 
model overestimates the magnitude
• Prediction for retrieval confidence was not supported (uniform)

Results fail to support the model’s predictions

• Precision for 3 repeated objects was not significantly differently 

from a single object

The results fail to support the prediction of the model
• The model predicts that repetitions pull significantly more 

than non-repetitions

Methodology Results/Simulation

Methodology Results/Simulation
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Methodology Results

Why? By ‘forgetting’ or deleting memory M2, there is less noise during 

the retrieval of M1, but also less binding pool neurons coding for M1

Why? Adding features increases the amount of noise in the binding pool, 

which means less binding pool neurons to represent that object 

Why? The ‘n’ shaped function is caused by how retrieved type activity is 

decoded (i.e. averaging activation vectors) 

Why? Like Pred. 3, this is caused by how retrieved type activity is 

decoded (i.e. averaging activation vectors)

Why? Some retrieval errors are caused by incorrectly retrieving a token 

bound to a distractor, resulting in a high confident swap

Methodology Results

These results suggest there may be increased swaps at higher confidence 

relative to medium levels of confidence 

• However confidence does not predict higher set sizes, which limits the 

applicability of this confidence metric for this task

Mean 
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N = 150

N = 26
Trials = 150

N = 15
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Prediction 3b: Three repetitions are less precise than a 
single object
Why? Each repeated object is bound to its own token, which increases 

the amount of noise in the binding pool

Binding Pool model 2.0
• Tokens index stored representations akin 

to object-files

• Types represent a stimulus’s features (e.g.

color, orientation)

• The binding pool is a shared resource 

pool where stimuli are stored as 

distributed representations

(based on Swan & Wyble, 2014):
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Coarse-coding of task irrelevant 
features of multiple objects

Garrett Swan and Brad Wyble

In a typical visual working memory (VWM) task, you 
may be asked to remember the color of an object. This 
visual object would then have both relevant (color) and 

irrelevant features (e.g. shape, size)

What happens to the irrelevant features?

We have previously shown that task irrelevant features 
are coarsely coded, using a surprise test methodology 

(Swan, Collins, & Wyble, in review)

Question: Is there coarse coding of irrelevant 
features when multiple objects are presented or is 

it a special property of a single object?

Potential mechanism: attention to a 
feature changes the amplitude of its 
activation (McAdams & Maunsell, 1999)

Replicates both the direct and the indirect results 
from the single-object experiment above

Coarse coding of an irrelevant feature appears to 
be a general property of memory in this task

Surprise trial: SD = 27.1, pM = 
.59

First post-surprise trial: SD = 12.2, pM = .92

BCS-1331073

Color input 

Direction 
input

Relevant

Irrelevant

Binding Pool model components
- Types = features (e.g. color, direction, location)
- Tokens = index representations
- Binding pool = pool of neurons

- Encoding = binding of token and types
- Type activation strength = task relevance

Pre-surprise trials: SD = 12.9 (.27), pM = .98 (.01)
Post-surprise trials: SD = 14.9 (.45), pM = .96 (.01)

Surprise trial: SD = 23.4, pM = 
.60

First post-surprise trial: SD = 20.9, pM = .82
Pre-surprise trials: SD = 19.2 (.54), pM = .91 (.02)

Post-surprise trials: SD = 22.0 (.81), pM = .85 (.02)

N = 71

Direct measure (Direction):
Surprise trial SD for direction is less precise than 

participants’ SD on the first post-surprise direction trial

Indirect measure (Color):
Memory for color becomes less precise when 

direction becomes relevant in the post-surprise trials

N = 150

Simulating Experiment with Binding Pool model

Pre-surprise:
Surprise trial:
Post-surprise:

Color Location Direction

Retrieved feature = 

Type activation strength is changed depending on trial

Surprise trial: SD = 28.1 (1.2), pM = .65 (.90)
First post-surprise trial: SD = 27.1 (1.0), pM = .64 (.02)

Pre-surprise trials: SD = 26.6 (.2), pM = .62 (.01)
Post-surprise trials: SD = 26.8 (.2), pM = .65 (.01)

Model can neither simulate the coarse memory nor the 
cost to color for making direction relevant

Why? There is no additional interference in the binding 
pool when direction becomes relevant because the 
amount of active BP neurons do not change with 

feature relevance

New encoding mechanism: Features are bound to a 
token independently (Vul & Rich, 2010)

Surprise trial: SD = 54.7 (3.3), pM = .74 
(.04)

First post-surprise trial: SD = 23.6 (.90), pM = .82 (.02)

Pre-surprise trials: SD = 20.9 (.2), pM = .84 (.01)
Post-surprise trials: SD = 22.9 (.2), pM = .83 (.01)

This change to encoding more accurately simulates 
coarse memories and the cost of adding relevant 

features to memory

Prediction 1: The effect of increasing the number of 
irrelevant features on relevant feature retrieval

SD = std. dev. in degrees, pM = percent in memory (Zhang & Luck, 2008)

Swan, G., & Wyble, B. (in review). Memory for a single object has distinct levels of precision for relevant and irrelevant 
features.
Swan, G., & Wyble, B. (2014). The binding pool: A model of shared neural resources for distinct items in visual working 
memory. Attention, Perception, & Psychophysics
Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature
Bays, P. M., Catalao, R. F., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared 
resource. Journal of vision
McAdams, C. J., & Maunsell, J. H. (1999). Effects of attention on orientation-tuning functions of single neurons in macaque 
cortical area V4. The Journal of Neuroscience,
Vul, E., & Rich, A. N. (2010). Independent sampling of features enables conscious perception of bound objects. 
Psychological Science,

# of additional Features

SD of 
Relevant 
Feature

Relevant

Irrelevant

The model predicts that many irrelevant features can 
be coarsely coded without affecting the precision of the 

relevant feature 

Background

Experiment

Binding Pool model (Swan & Wyble, 2014)
Binding Pool model 2.0
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Prediction 2: The effect of repeating features of different 
objects on relevant feature retreival

The model predicts that repeated features can be 
retrieved more precisely than if the features were not 
repeated, although not as well as when there is only a 

single object

0 1 2 3 4 5 6 7
10

20

30

40

# of Objects

SD of 
Relevant 
Feature

Non-repeat

Repeat

Set size 1

Object Perception, visual 
Attention, and visual 
Memory conference 2015

Coarse-coding of task 
irrelevant features of 
multiple objects



Error (°)
-100 0 100

Fr
eq

ue
nc

y

0

10

20

30

T

In a typical visual working memory (VWM) study, subjects 
are asked to remember features of an object (e.g.):

Yet, we know little about the memory of an object’s 
irrelevant features.

Given memory’s limited resources, it is vital to know what 
information is stored to fully understand memory’s capacity.

Memory for relevant features:

-There’s a cost to color memory when direction is relevant

Measuring the memory quality of a task 
irrelevant feature of an attended object

Garrett Swan and Brad Wyble
Department of Psychology, Pennsylvania State University

Memory for irrelevant 
feature:

- Note: one data point per subject

-To determine whether this 
distribution is N, U, B, or some 
combination (e.g. NU, BU, or NB), 
we used maximum likelihood estimation

- 4 parameters were varied:
- Width of a von Mises distribution--------------- (σ1: [1° to 180°, inf])
- Width of a second von Mises distribution----- (σ2: [1° to 180°, inf])
- Proportion of first von Mises--------------------- (P1: [0 to 1])
- Bias of both von Mises distributions------------ (μ: [0° to 15°])

Log likelihood (LL) function with μ fixed at 8°

- Slices of this 4-D space correspond to the different models, with 
the maximum fits displayed below (see Suppl. for full fits) :

- 2-comp. models fit better than single comp., with NB fitting best.

Conclusions:
- Subjects varied in their memory of an irrelevant feature with 

most having a coarse memory of direction on the surprise 
trial

- For subjects with a coarse memory of direction, the cost may 
have been greater when fully encoding direction.

- In a permutation test comparing the 
ratio (Blue/Red) of the cost ratios 
(post/pre), we find a greater penalty for 
subjects who had poor direction memory 
on the surprise trial (p < .04)

Tokens

Color input

Direction 
input

…

Swan & Wyble (2014)
- Binding Pool model components:

- Types = features (e.g. color, direction)
- Tokens = index representations
- Binding pool = pool of neurons

- Encoding = binding of token and types
- Type activation strength = task relevance

Relevant
Irrelevant

Discussion:
- Irrelevant features are encoded with reduced quality
- Increasing precision for one feature comes at the expense of 
other features
- This is true even for a set size of 1  

How can we simulate changes in relevancy?

Encoding

Special issue on VWM

BCS-1331073

Pre surprise 
(Relevant):

SD: 13. 

Post surprise 
(Relevant):

SD: 17.5

Surprise trial 
(Irrelevant):

NB

Simulating Retrieval

• Swan, G., & Wyble, B. (2014). The binding pool: A model of shared neural resources for distinct items in visual working memory. Attention, Perception, & Psychophysics, 1-22.

• Eitam B, Shoval R, Yesurun Y (2015) Seeing without knowing: Task relevance dissociates between visual awareness and recognition. Ann N Y Acad Sci 1339(1):125-137
• McAdams CJ, Maunsell JH (1999) Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. The Journal of Neuroscience, 19(1):431-441.
• Rock I, Linnett CM, Grant P, Mack A (1992). Perception without attention: Results of a new method. Cognitive Psychology, 24(4), 502-534.
• Suchow JW, Brady TF, Fougnie D, Alvarez GA (2013). Modeling visual working memory with the MemToolbox. Journal of vision, 13(10), 9.
• Zhang W, Luck SJ (2008) Discrete fixed-resolution representations in visual working memory. Nature 353(7192): 233-235
• Awh E, Vogel EK, Oh SH (2006) Interactions between attention and working memory. Neuroscience, 139(1):201-208

Pre-surprise color Post-surprise color Post-surprise direction

σ = 12.8 (SE: .3)
Pu = .02

σ = 17.6 (.5)
Pu = .03

σ = 13 (.5)
Pu = .02

Error (°)
-100 0 100

Fr
eq

ue
nc

y

0

500

1000

Error (°)
-100 0 100

Fr
eq

ue
nc

y

0

200

400

600

Error (°)
-100 0 100

Fr
eq

ue
nc

y

0

200

400

600

0.511.5

50

100

150

200

250

300

350

400

450 !204%

!225%

!215%

σ2%

σ2%
σ1% σ1% σ1% σ1% σ1%

P1%=%0% P1%=%.05% P1%=%.10% P1%=%.15% P1%=%.20% P1%=%.25%

P1%=%.30% P1%=%.35% P1%=%.40% P1%=%.45% P1%=%.50%

inf 100  13 
inf 

100 

 13 

inf 100  13 
inf 

100 

 13 

inf 100  13 
inf 

100 

 13 

inf 100  13 
inf 

100 

 13 

inf 100  13 
inf 

100 

 13 

inf 100  13 
inf 

100 

 13 

inf 100  13 
inf 

100 

 13 

inf 100  13 
inf 

100 

 13 

inf 100  13 
inf 

100 

 13 

inf 100  13 
inf 

100 

 13 

inf 100  13 
inf 

100 

 13 
inf 100  13 

inf 

100 

 13 

inf 100  13 
inf 

100 

 13 

inf 100  13 
inf 

100 

 13 

inf 100  13 
inf 

100 

 13 

inf 100  13 
inf 

100 

 13 

inf 100  13 
inf 

100 

 13 

inf 100  13 
inf 

100 

 13 

inf 100  13 
inf 

100 

 13 

inf 100  13 
inf 

100 

 13 

inf 100  13 
inf 

100 

 13 

inf 100  13 
inf 

100 

 13 Quality 
of fit

Error (°)
-100 0 100

Pr
ob

ab
ilit

y

0

0.05

0.1

0.15

0.2

0.25

0.3

Error (°)
-100 0 100

Pr
ob

ab
ilit

y

0

0.05

0.1

0.15

0.2

0.25

0.3

Error (°)
-100 0 100

Pr
ob

ab
ilit

y

0

0.05

0.1

0.15

0.2

0.25

0.3

Error (°)
-100 0 100

Pr
ob

ab
ilit

y

0

0.05

0.1

0.15

0.2

0.25

0.3

Error (°)
-100 0 100

Pr
ob

ab
ilit

y
0

0.05

0.1

0.15

0.2

0.25

0.3

Error (°)
-100 0 100

Pr
ob

ab
ilit

y

0

0.05

0.1

0.15

0.2

0.25

0.3

N"B"

BU" NB"NU"

U"

Si
ng

le
 C

om
p.

2-
Co

m
po

ne
nt

Error (°)
-100 0 100

Fr
eq

ue
nc

y

0

200

400

600

Error (°)
-100 0 100

Fr
eq

ue
nc

y

0

200

400

600

800

Error (°)
-100 0 100

Fr
eq

ue
nc

y

0

100

200

300

LL:
-256

LL:
-218

LL:
-1280

LL:
-209

LL:
-209

LL:
-205

Color%

Shape%

Texture%
Size%
…%

Memory%storage%hypotheses%

or% or%

Precise%rep.%
Coarse%rep.%

Task%%%%%%%%%%%%
irrelevant%%
features%

Task%
relevant%
feature%

N% U%% B%
SAmulus% Color%

Shape%

Texture%
Size%
…%

Memory%storage%hypotheses%

or% or%

Precise%rep.%
Coarse%rep.%

Task%%%%%%%%%%%%
irrelevant%%
features%

Task%
relevant%
feature%

N% U%% B%
SAmulus%

Experiment:
-Participants instructed
that only color is relevant

N = 139
Trials 1-25 = pre-surprise (only color report)

Trial 26 = surprise trial (direction report)
Trial 27-50 = post-surprise (color or direction)

To test these models, we coupled delayed estimation 
with a surprise test (Rock et al., 1992)

- Object-based encoding (Eitam et al., 2015)
- An irrelevant feature memory is as precise as a 

relevant feature memory

- Only relevant memories (Awh et al., 2006)
- No memory of an irrelevant feature

- Coarse coding 
- Coarse memory for an irrelevant feature

Predictions for irrelevant feature memory quality:

Narrow Uniform Broad

Analysis:
- Error = reported – presented
- σ and Pu (Zhang & Luck 2008)

Not in 
memory = Pu
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Results:
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In a typical visual working memory (VWM) study, 
subjects are asked to remember features of an object. 
We know little about what is actually remembered
about an object’s irrelevant features. 

Task:

Remember 
color

Presented 
object:

Memory 
trace?

Rock et al. (1992)

- Some memory for task irrelevant features of a task 
irrelevant object

Experiment:

N = 89
Trials 1-25 = pre-surprise (only color report)
Trial 26 = surprise trial (direction report)
Trial 27-50 = post-surprise (either color or direction report)

SurpriseControl

16/18 reported an 
irrelevant object

Eitam et al. (2013)

- Some memory for task irrelevant features of a task 
relevant object

Remember 
inner color

Inner?

Outer?

Relevant

Irre
levant

100%

0%
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Location
Color

100%
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Shape

Remember 
color

Q2: Is there a cost to encoding additional 
relevant features for one object?
- Compared color memory precision of pre-surprise (1-

feature) to post-surprise (2-feature) trials
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Testing a model of visual working 
memory: can extra features be 

stored without a cost?
Garrett Swan and Brad Wyble

Q1: How is the irrelevant information 
coded?
Surprise trial:
- Direction report
- Note: one data
point per subject
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Q1: How is irrelevant information coded?
- Half of the participants have a coarse encoding of 
the irrelevant feature relative to a relevant feature

- The relative likelihood of NNπU to NNπB is .0022

McAdams & Maunsell (1999)
- Attention modulates the amplitude of tuning 
curves in Macaque V4s

task relevant

Tokens

Color input

Direction 
input

…

Swan & Wyble (2014)
- Binding Pool model components:

- Types = features (e.g. color, direction)
- Tokens = index representations
- Binding pool = pool of neurons

- Encoding = binding of token and types
- Type activation strength = task relevanceSingle component Models

2 component Mixture Models
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Discussion:
- Irrelevant features are encoded with variable 
quality
- Increasing precision for one feature comes at the 
expense of other features
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LL functions

Q1: How is irrelevant information coded?
Q2: Is there a cost to encoding additional 
relevant features for one object?

3 component Mixture Models

What if some subjects encoded the 
orientation, but not the direction?
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• Swan, G., & Wyble, B. (2014). The binding pool: A model of shared neural resources for distinct items in visual working memory. Attention, Perception, & 
Psychophysics, 1-22.

• Eitam, B., Yeshurun, Y., & Hassan, K. (2013). Blinded by irrelevance: Pure irrelevance induced “blindness”. Journal of experimental psychology: human 
perception and performance, 39(3), 611.

• McAdams, C. J., & Maunsell, J. H. (1999). Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. The Journal of 
Neuroscience, 19(1), 431-441.

• Rock, I., Linnett, C. M., Grant, P., & Mack, A. (1992). Perception without attention: Results of a new method. Cognitive Psychology, 24(4), 502-534.
• Suchow, J. W., Brady, T. F., Fougnie, D., & Alvarez, G. A. (2013). Modeling visual working memory with the MemToolbox. Journal of vision, 13(10), 9.
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The Binding Pool model of VWM: A model for storing 
individuated objects in a shared resource pool

Garrett Swan and Brad Wyble
Pennsylvania State University

Encoding:
• One token is activated per 

item
• Types and tokens both 

project to the binding pool
• Binding pool nodes 

receiving convergent input 
are activated

The activated nodes store the 
connection between active 
Type and Token nodes.
• C1 = activated cell assembly

Token retrieval:
The cued feature is projected 
into the binding pool

The subset of binding pool 
nodes then summate their 
activity at the token layer

Strongly active
Weakly active

Type activity after retrieval of 
information from a token is a noisy 
reconstruction of the original type 
representation

Type activity is converted to vectors

Mean vector is then computed

Mean vector has two properties:
• Location = retrieved color value
• Vector length = ‘confidence’

Model components: 
• Tokens index stored representations as object-files
• Types represent a stimulus’ features (e.g. color, orientation, etc.)
• The binding pool is a shared resource pool of distributed 

representations in which multiple stimuli are stored

We are building a model of visual working memory (VWM). 

The Binding Pool model is a mechanistic model that accounts for both the 
quality and quantity of representations in VWM (Swan & Wyble, 2014)

• Bidirectional connections
• Randomized weights
• No synaptic modification
• Storage of information occurs         
through sustained activity in the 
binding pool

• Neural Units
Active          Inactive

Type retrieval:
The cued feature and the 
retrieved token project to the 
binding pool

The subset of binding pool nodes 
then summate their activity at 
the type layer
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Simulation:
One object with 
2, 3, and 4 
features

Testing predicted cost of adding a feature
• Subjects shown 1 stimulus (arrow) with both a color and a direction
• First block, reported consistently color or direction (between subj.)
• Second block, reported either feature at random
• Control group reported consistently the same feature
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Responses relative to target

Storing more items 
increases the 
variance of 
retrieved type 
activity for each 
item
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Simulated error distributions
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1
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Results and Discussion:
Significant main effect of starting feature (p < .0001) and condition (p < 
.0001), and interaction between the two (p < .05)

The cost of adding one additional feature on one object is detectable

These results support the prediction of the model that there is a cost 
when storing more features of a complex object

These results suggest that features are selectively encoded according to 
task demands
• Flexible encoding models can avoid the combinatorial explosion 

problem in representational space
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Binding Pool

Encoding 1 object with 3 features
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Encoding 1 object with 
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Swan, G., & Wyble, B. (2014). The binding pool: a model of shared neural resources for distinct items in visual working memory. Attention, Perception, & Psychophysics
Fougnie, D., Asplund, C. L., Marois, R. (2010). What are the units of storage in visual working memory? Journal of Vision
Oberauer, K., & Eichenberge, S. (2013). Visual working memory declines when more features must be remembered for each object. Memory & Cognition
Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. JEP: Human Perception and Performance
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The Binding Pool Model of Visual Working Memory
Garrett Swan and Brad Wyble

The Pennsylvania State University

Encoding:
• One token is activated 

per item

• Encoding is serial

• Types and tokens both 

project to the binding 

pool

• Binding pool nodes 

receiving convergent 

input are activated

The activated nodes store 

the connection between 

active Type and Token 

nodes 

Token retrieval
The cued feature is 
projected into the binding 
pool

The subset of binding pool 
nodes then summate their 
activity at the token layer

Type activity after retrieval of 
information from a token is a 
noisy reconstruction of the 
original type representation

Type activity is converted to vectors

Mean vector is then computed

Mean vector has two properties:

• Location = retrieved color value

• Vector length = ‘confidence’

There are two forms of capacity in the Binding Pool model:

-Fixed capacity of information storage: the quality of all 

memories is dependent upon the size of the binding pool.

-Variable number of items: The quantity of items stored per 

trial is variable: reflecting attentional fluctuations and encoding 

duration.

The precision of each memory trace results from the combination

of these two limits on each trial. These limits enable the model to 

simulate existing data and generate predictions.

Model components: 
• Tokens index stored representations as object-files
• Types represent a stimulus’ features
• The Binding Pool is a shared resource pool of 

distributed representations in which multiple 
stimuli are stored

We are building a model of visual working memory (VWM).

The Binding Pool model is a mechanistic model that accounts 

for both the quality and quantity of representations in VWM.

• Bays, P. M., Catalao, R. F. G., & Husain, M. (2009). The precision of visual working memory 
is set by allocation of a shared resousce. Journal of Vision. 9(10). 1-11

• Keshvari, S., van den Berg, R., & Ma, W. J. (2013). No evidence for an item limit in change 
detection. PLoS Computational Biology, 9(2)

The model data was analyzed with 
a mixture model (Bays et al., 2009)

• Bidirectional connection
• Randomized weights
• No synaptic 
modification
• Storage of information 
occurs through sustained 
activity in the binding 
pool
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Storing more items increases 
the variance of retrieved type 
activity for each item

Continuous 
report task

As set size 
increases, the 
model’s retrieval 
variability and the 
chance of swap 
and guessing 
errors increase

Change detection task

Each item in the probe 
display is compared to 
the retrieved item at that 
location
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Simultaneously and sequentially presented colors exhibit similar 
within-task interference for working memory representations

Garrett Swan and Brad Wyble
The Pennsylvania State University

Encoding:
• One token is activated 

per item
• Encoding is serial
• Types and tokens both 

project to the binding 
pool

• Binding pool nodes 
receiving convergent 
input are activated

The activated nodes 
maintain the the connection 
between active Type and 
Token nodes. 

Retrieval:
Information stored in a given
Token can be reconstructed at 
the Type layer.

The same connections which 
had been used to encode the 
type representation into the 
binding pool are now activated 
in the reverse direction

The distributed nature of the Binding Pool 
results in a noisy retrieval of the original 
Type representation.

Typically, the original Type input is activated 
to a higher degree than other Type nodes.

Type nodes are treated as vectors in 
a color wheel.  The population mean 
is computed by adding the vectors.

• Location = retrieved color value
• Vector length = ‘confidence’ of 

retrieval

Tokens = tokens project to 
overlapping subsets of the 
binding pool

Binding Pool = 
stores distributed Type 
representations, 
sustains activity during 
retention interval

Types = points within a color 
dimension (or any other)

The null pattern of results from the behavioral data lends 
credence to the serial encoding inherent in the model. 

The model can also simulate errors in change detection paradigms 
and can reproduce ensemble statistic effects (see supplemental).

Future work will generate predictions to be tested empirically. 

Model architecture: 
• Tokens index stored representations
• Types represent stimulus features
• The Binding pool is a shared resource pool of 

distributed representations in which multiple 
stimuli are stored

A property of this model is that simultaneously presented 
stimuli are encoded serially.  
Thus, a prediction is that encoding of simultaneous and 
sequential stimuli should produce similar patterns of errors.

n = 50
Trials = 132
Blocked = Seq / Sim
Set sizes = 1, 3, and 5

Experiment:
Sequential vs. simultaneous presentation

Visual working memory  (VWM) is a complex process of encoding 
and retrieving information.  Current models provide a theoretical  
framework for understanding how information is stored1,2, but 
few models are explicit about the underlying neural mechanisms 
of VWM.
A neural simulation can generate more explicit predictions about 
the structure of memory and the time course of encoding.
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Model and behavioral data were analyzed using code from Paul Bays at www.bayslab.com 

Simulations of Bays et al. 2009

Free parameters:
• Binding Pool size = 750
• Token overlap = 7.5%

• Token capacity = U(2,6)

Results

• Bidirectional connection
• Randomized weights
• No synaptic modification
• Storage of information 
occurs through sustained 
activity in the binding pool

2x3 ANOVA : No significant 
main effects for Block or 
interactions after Bonferroni 
corrections.

• Neural Unit

The number of tokens on each trial is drawn from a 
uniform distribution from 2 to 6. If the set size exceeds 
this capacity,  then one or more Types fail to be 
encoded. 

In order to better understand the 
different types of responses, the model 
output was analyzed with a mixture 
model2.

Precision Error Retrieval Error Guessing

Encoding and retrieval of a single Type:

1.) Luck, S., & Vogel, E. (1997). The capacity of visual working memory for 
features and conjunctions. Nature
2.) Bays, P., Catalao, R., & Husain, M. (2009). The precision of visual working 
memory is set by allocation of a shared resource. Journal of Vision
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Experiment 3: Compensating for decreased 

perceptual acuity in the periphery

Stimuli:

Methods: n = 75

Results:
Lag (p < .001)

DVA (p < .001)

Lag x DVA (p = .38)

Conclusions:  Increased stimuli size relative to 

eccentricity increased peripheral perception.

Experiment 4: Minimize potential practice 

effects from block design.

Methods: CE and CC appear within-block.

n = 54

Results:
Lag (p < .001)

DVA (p < .001)

Lag x DVA (p < .001)

Conclusions: In a within-block design, LAI was not 

found with spatial offset at lag 1.

Experiment 5: Emulating Mounts (2000) which 

used a salient T1

Methods: Red T1

Results:
Lag (p < .001)

DVA (p < .001)

Lag x DVA  (p < .007)

Conclusions: A salient T1 was not sufficient to 

produce a LAI with spatial offset at lag 1. 

Introduction: Rapidly presented targets produce 

changes in the deployment of attention

Attentional blink: T1 processing reduces T2 

processing within 200 to 500 ms

Is lag 1 sparing present in spatially offset 
stimuli?

Visser et al (1999)

-RSVP stream

-4 conditions

(CC, EE, CE, EC)

-Found no Lag 1
sparing with
spatial offset

Shih (2000)

-Dual RSVP streams

-2 conditions

(same or different loc.)

-Found Lag 1
sparing with

spatial offset

One possible explanation: 
Localized attentional interference
(Mounts 2000)

-2 targets presented in highlighted 

locations at 67ms temporal offset

-T2 performance varied as a function of T1 proximity

T

Hypothesis: LAI interferes with T2 

perception at lag 1 when T2 appears within 

approximately 2° of T1

1   2   3   4   5   6  

Experiment 1: Parametrically measure the 

extent of an attentional window

Methods: Replicated Visser et al (1999) paradigm 

with increased eccentricities (1-8°)

n = 51

SOA = 100 ms

Results:
Lag (p < .001)
DVA (p <.001)
Lag x DVA (p < .001)

Conclusions: LAI was not found with spatial offset 

at lag 1.

Experiment 2: Attempt to replicate 

Visser et al (1999)

Methods: White stimuli on dark background

n = 12

Results:
Lag (p < .001)

Condition (p < .007)

Lag x Condition (p < .001)

Conclusions: Failure to fully replicate Visser et al 

(1999). Found lag 1 sparing with spatial offset.

T  T   T        T T
1° 2° 3° 5° 7°

Excitation
Inhibition

Exploring Localized Attentional Interference in the 
Context of a Multiple Location RSVP Task.

Garrett Swan and Brad Wyble
The Pennsylvania State University

General conclusions:
-Experiments 1-5 no LAI with spatial offset at lag 1

-Experiment 2 failed to replicate Visser et al (1999)
-Experiment 3 found lag 1 sparing and Attentional 
blink in periphery
-Experiments 4-5 demonstrates that expectation did 
not produce LAI with spatial offset at lag 1
-Experiment 5 demonstrates that saliency did not 
produce LAI at lag 1

Discussion: 
-In RSVP, categorically defined targets 
are not sufficient to produce LAI
-Lag 1 sparing is not limited by 
immediate spatial proximity
-In RSVP, salient targets are not 
sufficient to produce LAI

Future Direction:
-Add perceptual noise to paradigm to find the 
boundary condition of LAI
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