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“Looked but failed to see” (LBFTS) incidents are motor vehicle collisions where the ) 35 1
driver reports looking, but fails to see the collision object (Treat et al., 1980) Scenarios 09

30
Multiple mechanisms have been proposed to account for such incidents, including (1) No pedestrian, cross  (2) Fixating on cross Pedestrians were triggered 'Fo go.a
change blindness, which is the failure to detect a salient change when that change traffic approaches traffic, pedestrian appears change based on the following o §o07
occurs during a brief disruption (Jensen et al., 2011) Tinmleq Criteria: 3 Dog
= ® 20 3 B

. . . . 8 §os

One pop.lulatlon of mdnndulals wl]o may be more susceptible to change blindness are o |=IIIIIIII (1) At certain intersections, a car 2 g
those with homonymous visual field loss (HVFL) - 215 204

T B s approached from the I §

- a loss of vision in the same parts of the visual field in both eyes caused by stroke G . . s £
t tic brain ini opposite side of intersection Wio §0.3
or traumatic brain Injury (2) Once gaze fell within 1 To2

o

degree of the car for 100ms,

Individuals with HVFL can compensate for their visual field loss by scanning towards

Gaze Participant’s W Cross traffic @ Critical ) 0.1
their blind visual field (Gassel & Williams, 1963), but need to scan at least as far as the l_’ o i Pedestrian ] then the pedestrian was o oLssd L, [
object of interest in order to see it triggered 123 456 7 8 9 10111213 14 15 16 17 18 19 20 21 . . .
J] Before change After change &8 — M m‘: S:\e/l:Lg Se':\l/ng
Vi S i o n SC i e n CeS Analysis of gaze tracking data suggested that some blind side detection failures of . We utilized 3 change conditions: i HVFL Partlmpants. . NV PaTFICI'paﬁtf )
individuals with HVFL may have resulted from a failure of visual awareness (Bowers et n Change blindness rates were significantly greater in individuals with HVFL vs NV
. al., 2015) A | (A) No pedestrian at the - ;\v:r:ge H:)IFgL: 128%0% (gEo“g; 4.7%) vs. NV = 9.4% (SEM = 3.2%)
= = . . . =2.4, se=0.9, t=2.7, p=0.!
S o C I ety 2 O 2 1 People with HVFL may be more prone to failures of visual awareness than people with L] intersection, then pedestrian
normal vision (NV) because there are additional demands placed on memory to appears near the crosswalk Significantly more change blindness for changes on the blind than seeing side
represent information in the blind portion of the visual field and they may experience L (B) Pedestrian far from the - Average = 31.0% (SEM = 9.6%) vs seeing side average = 12.4% (SEM = 4.1%)
crosswalk, then pedestrian b=1.3, se=0.49, t=2.6, p=0.01

more profound disruptions in vision while scanning than those with NV B

We tested this hypothesis in a driving simulator study with gaze-triggered changes

Hemianopic \

field loss and C

G)

appears near the crosswalk n
Crowd far from the ther results of interest

crosswalk, then pedestrian N ) . . i
appears near the crosswalk, Reaction tl(ne.a_s, a function of vision group:
- Not significant (1.1s vs 1.02s), b=-0.04, se=0.06, t=0.74, p=0.46
- Blind side RT was slower than seeing side (1.43s vs 0.98), p = 0.03

In all three conditions, the

. c o . HVFL;;; 1n N;I' " _D 10 p-value critical pertiestrian (inred) ) Change blindness rate as a function of pedestrian eccentricity:
fa I I ures of urrent driver, n (%) 3(27%) (88%) 0.09 ) Gl appeared in the same location - Not significant, b=0.02, se=0.02, t=0.9, p=0.37
Male, n (%) 9(82%) 5 (50%) 0.18 ® Pedestrian @ 8 o 88 Crowd Change blind e a5 a function of conditi
’ ange blindness rate as a function of condition:
awa re n e SS i n Age, y, median (IQR) . 500 (35;0) 550 (305'0) 032 24 gaze-triggered 16 pedestrians triggered 12 catch-events, e.g., - Not significant, ps >0.27
Race, n (%) reported White 11 (100%) 5 (50%) 0.01 pedestrians, when driver was within pedestrian standing at h blind lated with 0.26), visual .
Visual Acuity (LogMAR), mean (SD) -0.06 (0.1) -0.03 (0.07) 0.36 equally left and right 40m of pedestrian, intersection, cross traffic Change blindness rate was not correlated with age (ps > 0.26), visual acity (ps >

0.22), nor scores on the MoCA (p = 0.85)

si m u Iate d Snellen equivalent 20/17 20/19 equally left and right but no pedestrian, etc

o m e w
d HYH MoCA score, mean (SD) 26.7 (2.3) NA NA ata processin eneral Discussion
riving

Hemianopia caused by stroke, n (%) 5 (45%) NA NA Detection ) Change blindness i Omitted event We found significantly more change blindness in those with HVFL than those with

Left “© gl N X
Years since onset, median (IQR) 9.6 (11.2) NA NA % 0 NV, supporting our hypothesis
X - ) e e - For those with HVFL, there was significantly more change blindness in
LogMAR — Logarithm of the Minimum Angle of Resolution =10 =10 h that d on the blind th - id
MoCA — Montreal Cognitive Assessment (Naseddine et al., 2005) £o £o changes that occurred on the blind than seeing sides
g 10 & 10
8, \ I There were wide individual differences in change blindness rates, which is a

20
\\ 30| \ characteristic of the literature on detection performance in individuals with HVFL

\

a o a a0
Driving Simulator Rightud L . \ i NN
ight 05536 188 100 142 78 180 162 184 186 434 436 438 440 442 444 446 . . . . . .
. Time from start of dive () Time from startof drive (s) Time from start of cive (s) This paradigm produced change blindness for changes in the blind and seeing
g ] A [_,‘,. . B““,?;,j;“': pedfcrowd == Ped. Absent == Crosstraffic == Detection ] portions of the visual field, suggesting that this paradigm could be used in

. — - measuring change blindness events while driving
Examples of horizontal gaze (blue) and eccentricity of pedestrians (black) and cross

traffic (green). These examples correspond to a participant with left HVFL, so the blind Future versions of this paradigm will utilize pedestrians that change from “non-

visual field (gray) is to the left of gaze hazardous” to “hazardous” to see if driving relevance influences detection
We only analyzed events if the location of the change was visible before and after the Potential limitations:
change occurred - Low sample size limits interpretation of within-subject comparisons
- Left panel: change was detected (red dotted line) - Critical pedestrians may have been too distinct from other objects in the
- S . " . - Middle panel: change was not detected virtual environment (given lack of eccentricity and condition effects
Participants used a custom driving simulator with a Tobii eye tracker tracking gaze to . P g L . (e v )
N 5 . . . - ) 4 - Right panel: the location of the change was never visible before the change
drive through a city of intersections with buildings, cross traffic, and pedestrians N - R R
occurred, so the event was omitted Contact: garrett_swan@meei.Harvard.edu, No conflicts of interest, Funded by: RO1-£Y025677
Participants detected pedestrians that suddenly appeared or changed location
. L. . . . *+ Treat, J. R. (1980). A study of precrash factors involved in + Gassel, M. M., & Williams, D. (1963). Visual function in + Bowers, A. R., Alberti, C. F.,, Hwang, A. D., Goldstein, R., & Peli, E. (2015). + Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I.,
- On the right, participants should only make a horn press if they first notice no traffic accidents. HSRI Research Review. 10(6), 35. patients with homonymous hemianopia: The completion Pilot study of gaze scanning and intersection detection falures by drivers  Cummings, . L, & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: a brief
. . . : . + Jensen, M. S, Yao, R, Street, W. N., & Simons, D. J. (2011). phenomenon; insight and attitude to the defect; and visual with hemianopia. In: Proceedings of the 8th International Driving screening tool for mild cognitive impairment. Journal of the American Geriatrics
pedestrian (top right) and then notice the pedestrian appearance (bottom right) Change blindness and inattentional blindness. Wiley functional efficiency. Brain, 86(2), 229-260. Symposium on Human Factors in Driver Assessment, Training and Vehicle ~ Society, 53(4), 695-699. ) "
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Driving is a highly visual task
Vision impairment may adversely affect safe driving (Owsley & McGwin 2010)

Visual acuity (VA) is the predominant measure used by states to determine
whether someone is visually fit to drive (Peli 2008)

Eye disease may affect other aspects of vision while not reducing VA below state
requirements for driving
- Cataracts, diabetes, and macular degeneration reduce both VA and CS

Contrast sensitivity (CS) is not measured by any state, yet has been shown to be a
predictor of crash risk (Owsley et al., 2001)

- Better CS is a predictor of driving ability following cataract surgery (Wood &
Carberry, 2006) and in drivers with macular diease(Alberti et al., 2014)

Studies utilizing simulated vision impairment have found that a large VA reduction

is needed in order to produce a similar decrement in driving performance to a
relatively small CS reduction (Higgins & Wood, 2005)

We explored the effect of simulated CS and VA reduction on
reaction time and the proportion of timely responses to hazards
- Timely response = given the speed of the car and the time of detection,

could the driver safely brake to avoid a collision?

\Hypothesis: CS predicts detection performance better than VA

General methods

Participants drove in a highway setting that included oncoming traffic and
curves in a high-fidelity driving simulator (FAAC Corp., Ann Arbor, M)
- Participants completed two practice drives to acclimate to the simulator

12 total pedestrians appeared equally to the left or right of the driver and ran
toward the road along a collision course with the participant’s vehicle
- Pedestrians appeared when the driver was 5s away

Participants were instructed to drive normally, maintain a speed of 100kph, and
press the horn as soon as they saw a pedestrian

Experiment 1: Effects of VA and CS losses combined

. Snellen Equivalent
Goal Of EX u 1' (B;:tter 1o 20/100 20/6;e enZO/:I;lva e2’;/25 2016
How do simulated VA and CS
NV
. o . . 1.8
deficits affect RT and timeliness? *
17
Diffusing filters (Bangerter) were used 3., _L;_’W
to create CS reductions with VAs still g _A:’d
within legal limits for driving ' High
(unrestricted or restricted license) - +
13
NV = normal vision 08 o6 o2 02 o o2
Low = low impairment LogMAR VA
Mid = medium impairment Better VA

¥ High = high impairment

| 15 subjects, age = 26.9 (4.3) years,
E.g. High

6 males, 2+ years driving experience
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Results from Experiment 1

NV Low Mid High Mean (SEM
Prop. pedestrians detected 0.99 (0.02) 1.00 (0.00) 0.99 (0.02) 0.98 (0.03)
Car speed at horn press (kph) 93.47 (2.04) 93.05 (1.89) 92.89 (2.01) 93.73 (2.06)

Filters had no effects on detection rate or car speed at the time of the horn

Slower 25 «
—
RT |2 Xk
31 s — 3 [
£ s £
|
05—y Low Mid High
More é‘ , PR ——
timely £ s 3
Sos i
£ [}
S *p<.05
gos % p < 001
= NV Low Mid High

As the strength of the diffusing filter increased,
RT significantly increased
and the proportion of timely responses was significantly reduced
However, given that both CS and VA were reduced,
the individual effects of either a CS or VA reduction alone were not addressed

Experiment 2: Effects of VA and CS losses alone

Goals of Exp. 2: Snellen Equivalent

20/100 20/63 20/40 20/25 20/16

1) How does simulated VA 2
alone affect RT and timeliness? 19 ) m W
2) How does simulated CS 18 :’,’ihm e—
alone affect RT and timeliness? @17 / !
Blur (positive) lenses were used to g1e High —All’—ld
reduce VA without reducing CS 15 -+
Blur lenses were selected to match the '
VA of the High and Mid diffusing filters 1.3
Mid,s matched to Mid 08 06 ﬁggMAR 3‘; ° 02

Highps matched to High
Same Mid from Exp. 1
Same High from Exp .1

15 new subjects, age = 31.3 (10) years,

-
| 12 males, 2+ years driving experience

-

E.g. Highps )
Results from Experimen
NV Mids Highis Mid High

Prop. Pedestrians detected 1.00 (0.00) 0.99 (0.01)
Car speed at horn press (kph) 91.27(1.72) 90.26 (1.94)

099(0.01)  099(0.01)  0.99(0.001)
89.49(178)  90.92(1.97)  90.02(2.01)

As in Experiment 1, neither the filters nor the blur lenses had any significant
effects on detection rates or car speed

Results from Experiment 2 cont.

25 2.5
* %k bl
2 ns —— 2 p=.053 ‘;
= — [ —
P B - S )
o« o«
1 1
05 0.5
NV Midy Mid NV Highys High
> ns ¥ > ns
T 4| — T 4|~ p=.068
£ — E — i
= ~. | I~
Sos t | Sos t
5 5 nsp>.05
Sos Sos *p<.05
o [ *** p<.001
NV Midy Mid NV Highys High

A VA loss alone did not significantly increase RT nor
significantly reduce the proportion of timely responses

However, a CS loss alone did significantly increase RT and
marginally reduced the proportion of timely responses

When comparing between the four visual impairment conditions,
there was no significant interaction between VA and CS for either detection measure (p > .6)

Combining Experiment 1 and Experiment 2

To determine whether VA and/or CS is the best predictor of RT and proportion of
timely responses, model comparison was used for 4 regression models:
RT

-270
-280

o
@ 200
Better fity .0

:

VA cs VA+CS VA*CS

N N VA = VA alone
Timeliness

CS = CS alone

o 150 VA+CS = VA and CS
@ 154 VA*CS = VA and CS and
Better fity

158 the interaction
VA CS  VAHCS  VA*CS

:

CS alone predicted RT (ABIC = 20.6) and timeliness (ABIC = 4.4) better than VA
alone, and CS alone was not different from the best model (VS + CS, ABIC < 2)

General Discussion

In Experiment 1, a simulated VA and CS reduction impaired RT and timeliness

In Experiment 2, a CS reduction alone significantly impaired RT and timeliness,
while a VA reduction alone had minimal effects

While there was no significant interaction between VA and CS on RT and
timeliness, the model that best predicted behavior included VA and CS

These results are congruent with other studies which have reported that simulated
CS reductions impair driving performance to a greater extent than simulated VA
reductions (Higgins, Wood, & Tait, 1998)

Our findings suggest that CS, as well as VA, should be assessed when measuring
vision for driving licensure

- This is especially true in eye diseases such as cataracts where VA may be
within the legal limit, but CS is reduced

« Owsley, C., McGwin Jr, G. (2010). Vision and driving. Vision Research, 50(23), 2348-2361

+ Peli, E. (2008). Driving with low vision: who, where, when, and why. Albert and Jokobiec’s Principles
and Practice of Ophthalmology. Elsevier: 4(2008): 5369-5376

* Owsley, C., Stalvey, B. T., Wells, J., Sloane, M. E., McGwin, G. (2001). Visual risk factors for crash
involvement in older drivers with cataracts. Archives of Ophthalmology, 119(6), 881-887

= Wood, J., Troutbeck (1994). Effect of visual impairment on driving. Human Factors, 36(4), 476-487

* Wood, J. M., Carberry, T. P. (2006). Bilateral cataract surgery and driving performance. British
Journal of Ophthalmology, 90(10), 1277-1280.

* Alberti, C. F., Horowitz, T., Bronstad, P. M., Bowers, A. R. (2014). Visual attention measures
predict pedestrian detection in central field loss: a pilot study. PloS one, 9(2), e89381

* Higgins, K. E., Wood, J. M. (2005). Predicting components of closed road driving performance
from vision tests. Optometry and Vision Science, 82(8), 647-656
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PENNSTATE Does an unexpected task reset the contents &

Visual working memory (VWM) describes the ability to encode, store, and Pennsylvania State University
retrieval information 2Zhejiang University Combined results
gsp.swan@gmail.com The results on the surprise trial of both experiments were compared

Many studies have explored the contents of VWM by asking participants to ) . !
report unexpected information in a surprise test bwyble@gmaiLcom using a log linear analysis

- Inattentional blindness (Mack & Rock, 1998) psychenhui@gmail com

- Attribute amnesia (Chen & Wyble, 2015) There was a significant effect of group (G2=11.5, p <.005), but no

a Results from Experiment 1 ™ | significant effect of experiment (G2= .9, p = .33)
Errors associated with these tasks are attributed to either failure of perception/
encoding (Mack & Rock, 1998) or forgettin Wolfe, 1999 Same attribute on surprise trial Diff. attribute on surprise trial . .
Vision Sciences el ) getting ( ) 100 100 The combined analysis suggests that these results are a general
Forgetting may be exacerbated by the demands of understanding and g 80 g 80 property of memory and not a function of the specific attributes
S i t 2 O 1 7 responding to a unexpected task S e § 60 retrieved on the surprise trial
OC I e y - Surprise tests often have increased reaction time g 40 g Ident. Recog. I
Does a surprise trial reset the contents of VWM? (Swan, Wyble, & Chen, 2017) 20 50 Reaction time
- We compared surprise trial performance for an attribute that participants 0 o2 oy Iy P’y 5 . . = Median
< 0 Ny 7! S ac® N
expected to report versus an attribute they did not expect to report e o &“@\“ e I o p<.05 Were. ther.e differences in ) .
reaction time on the surprise 40 . .
O e S a n Pre-sur  Surprise Contr.1 Contr.2 Contr.3 Contr.4 trial between the groups7 .
4 E . t1 N Location N/A 40%  83% 90% 90% 95% ' 230
o
nexpe Cte d ta S k Xperimen Color  N/A  35%  85%  85%  75%  83% o 5 . . .
u p In all trials, participants were searching for a Identity  91% 75%'  85%  95% 90% 88% There were no significant g 20 i H i H
L . . .
target letter among 3 digits . differences in RT 2 N Y
o . Pre-sur  Surprise  Contr.1 Contr.2 Contr.3  Contr. 4 Exp. 1 (£(78) = 68. p= 25
reset t h e o . Location N/A 78%  93% 88% 93% 98% - Exp.1(t(78)=.68, p= .25) 10
Pre-surprise trials 1 to 11 o o | oeeEonom Color  83% 60%  83% 80% 90% 88% - Exp.2(t(78)=13,p=.11)
- The same-attribute group reported the identity v Identity  N/A 50%!  80% 75% 93% 83% °® . -
CO nte nts Of with 4 alternative forced choice (4AFC) 2 4 Superscript is the order of question 0 Diff same Diff.  Same
- The different-attribute group reported the . 250ms - . . Exp.1 Exp.1 Exp.2 Exp.2
. . color with 4AFC A 5 - Participants in both groups had to read the same unexpected question
visual working : 2nd type the letter
Surprise trial 12 T @ - However, participants in the same-attribute group had significantly better General Discussion
? - Both groups recalled the identity of the letter | {g- HE" 100ms accuracy on the surprise trial than the different-attribute group
I | le I I IO ry H - Next, both groups reported location of the v L /| Results show that attributes already stored in visual working memory
letter with 4AFC / . \ can be retrieved despite interference from an unexpected task
- Lastly, both groups reported the color of the 400ms Results from EXperlment 2
letter with 4AFC prise Trials Surprise and Control Trials Same attribute on surprise trial Diff. attribute on surprise trial Results support fractionation of working memory into different stores
Control trials 13 to 16 Mersvisetor | o S e R v | ety 100 U‘°° (e.g. Baddeley, 2003) because reading did not strongly affect memory
ontrol trials 15 to same-attribute H e il § 80 § 80 responses on the surprise trial
rou g g
- Same as surprise group £ 3 6o S 60
trials v H H Ident. Recog. " L L
e § 0 540 Color Recall Results show the content-addressability of memory, which is the ability
Color task for e — e Location 20 20 Color Recog. I to access memories by their content (e.g. Swan & Wyble, 2014) even
diffe - .. . . . . . .
atriune grou =3 N ] with an incorrect expectation of how information will be retrieved
=: 6 8 G @ W gh R L
v . R ey v‘esﬁ o ot *x,p<.05
ey} ' . . . . .
coor presur  Suprise Contr1 Contr2 Contrn3 Contrd R('esu.lts' also show that the inability to repo.rt information on the surprise
Same attribute group N = 40 : task Location  N/A 3% 68% 80% 78% 90% trial is influenced by the strength of encoding (Chen & Wyble, 2016) and
_ Diff. attribute group N = 40 Y, Color  83% 68%'  80%  85% 75% 83% not merely forgetting
Identity  N/A 45% 55% 73% 63% 73%
/ Expe riment 2 N Swan, G., Wyble, B., & Chen, H. (2017). Working memory representations persist in the
Surprise question Pre-sur  Surprise  Contr.1 Contr.2 Contr.3 Contr.4 face of unexpected task alterations. Attention, Perception, & Psychophysics, 1-7.
. . Location N/A 63%  78% 73% 88% 85%
Pre-surprise trials 1 to 11 T Colr  NA 3% 65% 7% 8% 80%
- The same-attribute group reported color with 4AFC s o et Identity  85% s3%  70% 78% 75% 78% . :;ga;;:v, A. (2003). Working memory: looking back and looking forward. Nature reviews neuroscience, 4(10),
- The dlfferent attribute group rePorted Identlty with 4AFC superscript is the order of question * Chen, H & Wyble, B. (2015). Amnesia for object attributes failure to report attended information that had
just reached conscious awareness. Psychological Science, 26(2), 203-210
Same attribute group N = 40 - These results replicated Experiment 1 using color instead of identity . Cf;e"l H., & V}/vb'er f,i (25015)- A“fibt;t;‘ a'"h"isia fel_:‘ects a;ack of memvﬂﬁOﬂSD"““O:?;af;f;ded
. . " . . .ps . N il tion. i t 3 ti 2 3
Surprise trial 12 and Control trials 13 to 16 Diff. attribute group N = 40 - Participant were significantly more accurate in recalling color on the . I,a:cr;n;m; Rgculénlc,’(fgegfe/:z:n;’ionzcbﬁnfliyess ;I\Zinﬂf.’g’:nﬁr’:dag"e, M"Z{“Jﬂa.ff;s, .
- Both groups recalled the color of the target letter surprise trial in the same-attribute group than the different-attribute + Swan, G., & Wyble, B. (2014). The binding pool: A model of shared neural resources for distinct items in visual
- Next, both groups reported the location and then identity with 4AFC group working memory. Attention, Perception, & Psychophysics, 76(7), 2136-2157. ]
* Wolfe, J. M (1999). Inattentional amnesia. In V. Coltheart (Ed.), Fleeting Memories(pp.71-94). Cambridge, MA:

\\ / MIT Press.
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Visual working memory (VWM) describes the ability to encode,
store, and retrieval visual information

Testing predictions of models of VWM motivates new research and

tests the model’s validity

* Correct predictions = supports model

* Incorrect predictions = suggests model needs to be revised or
replaced

Here, we tested published predictions of the Binding Pool model

Testing Predictions of the

Binding Pool model

Garrett Swan and Brad Wyble
Pennsylvania State University

Prediction 2: Storing more features reduces memory
precision

Why? Adding features increases the amount of noise in the binding pool,
which means less binding pool neurons to represent that object

/Binding Pool model 2.0 (based on Swan & Wyble, 2014):\

Token nodes index stored representations ..

akin to object-files

* Types represent a stimulus’s features (e.g.
color, orientation) s

* The binding pool is a shared resource
pool where stimuli are stored as
distributed representations

Binding Pool

Presented
stimulus

Encoding

.‘/o\ol 0,0,++0,

Retrieval stage 1
~ fTeoe o

Retrieval stage 2

Token nodes 0,0,0,+++ 0,

Binding
Pool

oboooo
Location
é °
oboocoo

oboooo

Cdor 00000000
——

Cmm& 000000
-

A memory is the
serial conjunction of

Color' @ .gO o 040}\43
Next, the cue and
retrieved token node

First, a cue is used
to retrieve a token

a type and a token node are used to retrieve
node the desired feature
\ Note for all simulations, model parameters were unchanged /

Prediction 1: Forgetting one object will increase the
precision of another object in memory
* Directed forgetting

Why? By ‘forgetting’ or deleting memory M,, there is less noise during
the retrieval of M, but also less binding pool neurons coding for M,

Methodology Results/Simulation

Tokennodes @, Oy O; O, *** O,
oo A 25

oang o L
ool os
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o~ a(’)
o 10
o 5
Clr 00000000 o
- Williams Model
——
N=20 etal **peon
*p<0s
Trials = 600

Results from Williams et al. (2013) supported this prediction 5

y

Results/Simulation

*x

Methodology

Token nodes @, /o,\o, 0,+++0,

Binding
Pool

v

15

o ()"

Clor 00000000
———

o
Swan etal Model
** p<0l

Results from Swan, Collins, and Wyble (2016) supported this prediction ’

Prediction 5: The similarity of two objects will determine the
magnitude of the bias of a third object’s response distribution

Why? Like Pred. 3, this is caused by how retrieved type activity is
decoded (i.e. averaging activation vectors)

e X+ 60 + 120
— X+ 75 + 105

Methodology Results

“«’ = starting luminance
27 and 3" #s = other presented colors

x>180
X+90+90

e Random

X+60+120 X+75+105

9
or or 1
x<180
05
[

N=27
Trials = 225

Rand X+90+90

Error (°)
The results do show a bias towards non-targets v
However, the results fail to support the model’s prediction

* The model predicts that repetitions pull significantly more
Prediction 6: Participants should have high confident

than non-repetitions
* Found same result using luminance instead of color
retrieval errors

y Why? Some retrieval errors are caused by incorrectly retrieving a token
bound to a distractor, resulting in a high confident swap

Prediction 3: Similarity in feature space affects memory
precision

Why? The ‘n’ shaped function is caused by how retrieved type activity is
decoded (i.e. averaging activation vectors)

Methodology Results/Simulation
4 1
N=53
Mean 5 Trials = 150 1
vector 2 ” Model
angle 1 — Median of
oy 2 = S
e e lerror ()] P~ pate
= peol

Difference between 2

..k
vectors %55 w0 w0 7o w0 w0 PO

Difference between colors (°)

Results qualitatively supports the prediction for precision, but the
model overestimates the magnitude /

Prediction 4: Three repetitions are less precise than a
single object
[Why? Each repeated object is bound to its own token node, which

increases the amount of noise in the binding pool

Methodology RESlfltS/SlmuIatuon

N=24 —
Trials = 250 30—l
[ ]
|
20
" @ ° (n) .
10
**p<01
5 “peos
Data Model

Results fail to support the model’s prediction
* Precision for 3 repeated objects was better than a single object

X

* Found the same results using sequential presentation

s Set size 1

Methodology o cetenes Results

Setsizes 40 !
o)
20 os
s-_‘\*"’_,_;

* Participants adjusted the location
of two bars to include the actual
color 90% of the time

« Data was separately binned into
equal percentiles

+ Data fit using mixture model (Bays © T
etal., 2009) Low  High Low  High

Confidence Confidence

These results suggest that some participants do guess and make retrieval

errors despite high levels of confidence ‘/

* However, there isn’t a u-shaped function for P, which fails to support xy

Set size 1and 3 = 20
Set size 5 =20
Trials = 150

the prediction of the model

General discussion:
Predictions of the Binding Pool model were tested:
* Prediction 1: provides an account of directed forgetting
* Prediction 2: supports the model’s mechanisms for encoding
objects and features
* Prediction 3: suggest opponent colors interfere less in memory
* Prediction 3 and 5: failure to support these predictions indicate
that the decoding of retrieved type activity is incorrect
* Prediction 4: failure to support this prediction indicates that
repetitions are coded differently
* ldea: Repetitions are bound to the same token
* Prediction 6: results suggest that the model’s current
implementation of confidence could be improved
* This will likely change as a result of how type activity is
decoded in future iterations of the model

« Bays, P. M., Catalao, R. F,, & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource.
Journal of Vision, 9(10), 7-7

+ Swan, G., & Wyble, B. (2014). The binding pool: A model of shared neural resources for distinct items in visual working memory.
Attention, Perception, & Psychophysics, 76(7), 2136-2157.

+ swan, G, Collins, J., & Wyble, B. (2016). Memory for a single object has differently variable precisions for relevant and irrelevant
features. Journal of vision, 16(3), 32-32.

* Williams, M., Hong, S. W, Kang, M. S., Carlisle, N. B., & Woodman, G. F. (2013). The benefit of forgetting. Psychonomic bulletin &
review, 20(2), 348-355.
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BCS-1331073 B i n d i n g PO 0 | m O d e | [Why? Like Pred. 3, this is caused by how retrieved type activity is }
Visual working memory (VWM) describes the ability to encode, decoded (i.e. averaging activation vectors)
store, and retrieval visual information X+60+120
Garrett Swan and Brad Wyble Methodology — e ReSults
= starting luminance +0+90% > 180
Testing predictions of models of VWM motivates new research and . . . 27 and 3¢ s = other presented luminances “ o
tests the model's validity Pennsylvania State University 1N
* Correct predictions = supports model o . R womem o
P S PP ) Prediction 2: Storing more features reduces memory o or “
* Incorrect predictions = suggests model needs to be revised or o w /—\\
replaced precision N=61 T S
rials = e e e e
Here, we tested published predictions of the Binding Pool model Why? Adding features increases the amount of noise in the binding pool, Tasn Error (%)
which means less binding pool neurons to represent that object
’~ ~ Methodology Results/Simulation The results fail to support the prediction of the model
Binding Pool model 2.0 (based on Swan & Wyble, 2014): e A0 0w O N o150 i + The model predicts that repetitions pull significantly more
VISIOh SC|enceS * Tokens index stored representations akin - than non-repetitions
N |

to object-files

. * Types represent a stimulus’s features (e.g.
SOClety 2016 color, orientation) s

(Types)

* The binding pool is a shared resource
pool where stimuli are stored as
distributed representations
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L Prediction 6: Participants should have high confident
wan et Model

Color 000000
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al retrieval errors

Results from Swan, Collins, and Wyble (2016) supported this prediction L7 [Why? Some retrieval errors are caused by incorrectly retrieving a token ]

Presented
stimulus

bound to a distractor, resulting in a high confident swap
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Results qualitatively supports the prediction for precision, but the / _ _
L. ] ] o model overestimates the magnitude General discussion:
Prediction 1: Forgetting one object will increase the « Prediction for retrieval confidence was not supported (uniform) x Predictions of the Binding Pool model were tested:

precision of another object in memory * Prediction 1: provides an account of directed forgetting
* Directed forgetting Prediction 3b: Three repetitions are less precise than a * Prediction 2: supports the model's mechanisms for encoding

ingle obiect objects and features
Why? By ‘forgetting’ or deleting memory M,, there is less noise during Single objec * Prediction 3a, 4 and 5: failure to support these predictions
the retrieval of M, but also less binding pool neurons coding for M, [Why? Each repeated object is bound to its own token, which increases } indicate that the decoding of retrieved type activity is incorrect

the amount of noise in the binding pool

* Prediction 3b: failure to support this prediction indicates that
repetitions are coded differently

.. Methodology Results/Simulation Methodology Results/Simulation
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Coarse-coding of task
irrelevant features of
multiple objects

Background

In a typical visual working memory (VWM) task, you
may be asked to remember the color of an object. This
visual object would then have both relevant (color) and

irrelevant features (e.g. shape, size)

What happens to the irrelevant features?

We have previously shown that task irrelevant features
are coarsely coded, using a surprise test methodology
(Swan, Collins, & Wyble, in review)

Color Report Direction Report

N/A

L]

150ms  100ms.

Trials P
S

Retention:
1000ms

0,0)©)

N =150

Direction{ Surprise trial: SD = 27.1, pMsg
First post-surprise trial: SD = 12.2, pM = :92

Pre-surprise trials: SD = 12.9 (.27), pM = .98 (.01)
Post-surprise trials: SD = 14.9 (.45), pM = .96 (.01)

Color

SD = std. dev. in degrees, pM = percent in memory (Zhang & Luck, 2008)
Direct measure (Direction):
Surprise trial SD for direction is less precise than
participants’ SD on the first post-surprise direction trial

Indirect measure (Color):
Memory for color becomes less precise when
direction becomes relevant in the post-surprise trials

Experiment
Question: Is there coarse coding of irrelevant
features when multiple objects are presented or is
it a special property of a single object?

Color Report Direction Report

N/A

tsomst00ms
@
als 2575

o

0[®[®

N=71

Retention
1000ms

Direction { Surprise trial: SD = 23.4, pMsz

First post-surprise trial: SD = 20.9, pM = .82
Pre-surprise trials: SD = 19.2 (.54), pM = .91 (.02)

Color Post-surprise trials: SD = 22.0 (.81), pM = .85 (.02)

Replicates both the direct and the indirect results
from the single-object experiment above

Coarse coding of an irrelevant feature appears to
be a general property of memory in this task

Coarse-coding of task irrelevant VSR
features of multiple objects
Garrett Swan and Brad Wyble

Binding Pool model (Swan & Wyble, 2014)

Potential mechanism: attention to a .
feature changes the amplitude of its ¢
activation (McAdams & Maunsell, 1999) &

Binding Pool model components
- Types = features (e.g. color, direction, location)
- Tokens = index representations
- Binding pool = pool of neurons

- Encoding = binding of token and types

Orentation

- Type activation strength = task relevance

Tokens

€Q 0000 0

Of,
Binding !
Pool : Direction
@) ~| input
1| g
N
O~

mmm Relevant

O

O O OMO O O O
T u

Color input

= [rrelevant
C, = activated cell assembly is product of input

;s .
BP = Z(BP + (Token; * Token.onn,) H(Type,,i # TYPeconny)
H X

K= number of items L = number of type layers

Simulating Experiment with Binding Pool model

Type activation strength is changed depending on trial

Color Location Direction
Pre-surprise: /\ /\ AN
Surprise trial: /\ /\ VAN

VANEERVANEERVAN

Retrieved feature =

Post-surprise:

o Surprise trial: SD = 28.1 (1.2), pM = .65 (.90)
Direction— st post-surprise trial: SD = 27.1 (1.0), pM = .64 (.02)

Color Pre-surprise trials: SD = 26.6 (.2), pM = .62 (.01)
Post-surprise trials: SD = 26.8 (.2), pM = .65 (.01)
Model can neither simulate the coarse memory nor the
cost to color for making direction relevant

Why? There is no additional interference in the binding
pool when direction becomes relevant because the
amount of active BP neurons do not change with
feature relevance

@f ® Psycﬁtoolbox
Y

BCS-1331073
Binding Pool model 2.0

New encoding mechanism: Features are bound to a
token independently (Vul & Rich, 2010)

K L
BP = Z Z(BP + (Token; * Takenm,,,,l)(Type,,; * Typecmmm)

j=1i=1

Tokens
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Pool © | Direction
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Color input

= |rrelevant

Surprise trial: SD = 54.7 (3.3), pM = .74

Direction { 04)
irst post-surprise trial: SD = 23.6 (.90), pM = .82 (.02)

Color {

This change to encoding more accurately simulates
coarse memories and the cost of adding relevant
features to memory

Pre-surprise trials: SD = 20.9 (.2), pM = .84 (.01)
Post-surprise trials: SD = 22.9 (.2), pM = .83 (.01)

Predictions

Prediction 1: The effect of increasing the number of
irrelevant features on relevant feature retrieval

30

SD of / B Relevant
20

E:;e‘:?:t - . Irrelevant

2 3 4 5 6 7
# of additional Features
The model predicts that many irrelevant features can
be coarsely coded without affecting the precision of the
relevant feature

Prediction 2: The effect of repeating features of different
objects on relevant feature retreival

SD of 20
Relevant
-

Feature 20

B Non-repeat
. Repeat

B Set size 1

# of Objects
The model predicts that repeated features can be
retrieved more precisely than if the features were not
repeated, although not as well as when there is only a
single object

Swan, G., & Wyble, B. (in review). Memory for a single object has distinct levels of precision for relevant and irrelevant
features.

Swan, G., & Wyble, B. (2014). The binding pool: A model of shared neural resources for distinct items in visual working
memory. Attention, Perception, & Psychophysics

Zhang, W, & Luck, 5. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature

Bays, P. M., Catalao, R. ¥, & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared
resource. Journal of vision

MeAdams, C. 1, & Maunsell, . H. (1999). Effects of attention on orientation-tuning functions of single neurons in macaque
cortical area VA. The Journal of Neuroscience,

Vul, €, &Rich, A. N. (2010). Independent sampling of features enables conscious perception of bound objects.
Psychological Science,
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Measuring the

memory quality of

a task irrelevant
feature of an
attended object

In a typical visual working memory (VWM) study, subjects
are asked to remember features of an object (e.g.):

__I O

Yet, we know little about the memory of an object’s
irrelevant features.

Given memory’s limited resources, it is vital to know what
information is stored to fully understand memory’s capacity.

Memory storage hypotheses

f—% Coarse rep.
Col Task
Stimulus oor <«— relevant
/Shape | __ feature
Texture
. i ” 1] TaSk
Size .
§ p— irrelevant
E-- features

- Object-based encoding (Eitam et al., 2015)
- An irrelevant feature memory is as precise as a
relevant feature memory

- Only relevant memories (Awh et al., 2006)
- No memory of an irrelevant feature

- Coarse coding
- Coarse memory for an irrelevant feature

Measuring the memory quality of a task
irrelevant feature of an attended object

Garrett Swan and Brad Wyble

Department of Psychology, Pennsylvania State University

Memory for relevant features:

Pre-surprise color Post-surprise color Post-surprise direction

600
600
51000 3 z
§ §400 §400
£ 500 8200 g
£ i i 200
0 alllhy, 0 ! 0 Jill,
100 0 100 100 0 100 100 0 100
Error (°) Error () Error (°)
0=12.8(SE:.3)  0=17.6(.5) 0=13(.5)
Pu=.02 Pu=.03 Pu=.02
L J
p <.0001

-There’s a cost to color memory when direction is relevant

PENNSTATE

BCS-1331073

Conclusions:

- Subjects varied in their memory of an irrelevant feature with
most having a coarse memory of direction on the surprise
trial

- For subjects with a coarse memory of direction, the cost may
have been greater when fully encoding direction.

- In a permutation test comparing the
ratio ( /Red) of the cost ratios
(post/pre), we find a greater penalty for
0 e subjects who had poor direction memory
on the surprise trial (p <.04)

How can we simulate changes in relevancy?

To test these models, we coupled delayed estimation
with a surprise test (Rock et al., 1992)

Experiment: Trial #
1-25

Feedback

A

Y

-Participants instructed
that only color is relevant

%26

250ms 100ms

®
®
®

) 27-50

Analysis: or
- Error = reported — presented
Retention:

- 0 and Pu (zhang & Luck 2008) 1000ms

In memory = 0

N N =139

: I Notin i -25 = pre- i
ﬁ oy pu Trials 1-25 = pre-surprise (only color report)

Trial 26 = surprise trial (direction report)
4 .

= ] Trial 27-50 = post-surprise (color or direction)

o
Error ()

Predictions for irrelevant feature memory quality:

Narrow | ’! Uniform Broad |A

Object-based Only relevant Coarse coding

Results:

3

s Color recall

3

_| Surprise trial/’
| response
S~ N\A A~

T T T T T T T
4 5 10 15 20 25 30 35 40 45 50
Trial

- Variance in error across trials

= Direction recall

SD of Error (°)
R
1

°

Memory for irrelevant 30
feature: >

- Note: one data point per subject 5 20

-To determine whether this w10

distribution is N, U, B, or some
combination (e.g. NU, BU, or NB), 0 100 0 100

we used maximum likelihood estimation Error (°)
- 4 parameters were varied:
- Width of a von Mises distribution--------------- (oy: [1° to 180°, inf])
- Width of a second von Mises distribution----- (,: [1° to 180°, inf])
- Proportion of first von Mises--------=------------ (Py:[0to 1])
- Bias of both von Mises distributions------------ (p: [0° to 15°])

Log likelihood (LL) function with p fixed at 8°

P,=0 P,=.05  P,=10 P,=.d5 P,=.20 P;=.25
5 o  —
o, - "
o o
o 0013 e 00 1

§
- |
=30 Pi=35 P40 Pi=ds RSO
— '215 Quality
02 * 'lmﬂ-' ” 'mﬂ- | ” l 22! Of flt
'mw 100 13 W\n! 100 13 'mw 100 13 W\nl 100 13 'mm 100 13 ad
0 0 0, 0, 0

- Slices of this 4-D space correspond to the different models, with
the maximum fits displayed below (see Suppl. for full fits) :

Special issue on VWM

Swan & Wyble (2014)
- Binding Pool model components:
- Types = features (e.g. color, direction)

- Tokens = index representations
- Binding pool = pool of neurons

- Encoding = binding of token and types
- Type activation strength = task relevance

Tokens

Q000" O

Encoding

O
O
o Direction
input

O

\

O O O O O OO

m mm [rrelevant

= Relevant

1 Color input

Simulating Retrieval

800

2
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8
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»
8
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N

8

s
2
8

°

G000 100 4100 0 100 <100 0 100
Error (°) Error (%) Error ()

Pre surprise Surprise trial Post surprise

(Relevant): (Irrelevant): (Relevant):
SD:13. NB SD:17.5
Discussion:

- Irrelevant features are encoded with reduced quality

- Increasing precision for one feature comes at the expense of
other features

- This is true even for a set size of 1

g o LL:
osl U 0
g 24, -256 |: -
S | 3 H
P - ]
W o
c 005, 005
) 0
o Evrcfv\‘) o
E 03 03
§ Jeu LW JNe W
g i | 209 § 205
g & < o
5]
k.) 0.05 5 005
N ° 100 0 100 100 [ 100 ° 100 0 100
() o) e
- 2-comp. models fit better than single comp., with NB fitting best.

© swan,G, & Wyble,B. h 1

1R, Yesurun ¥ (2015) Task VAcod i 1339(1)125-137
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Testing a model of
visual working
memory: can extra
features be stored
without a cost?

In a typical visual working memory (VWM) study,
subjects are asked to remember features of an object|.
We know little about what is actually remembered
about an object’s irrelevant features.

Testing a model of visual working [ NAAS
memory: can extra features be

stored without a cost?
Garrett Swan and Brad Wyble

Task: Presented Memory
object: trace?
Remember ’ ’ '
color
Rock et al. (1992) 100%
16/18 reported an  50%
_|_ —I_ irrelevant object -
- 0%
o0
Control  Surprise Ao

- Some memory for task irrelevant features of a task
irrelevant object

Eitam et al. (2013)
Remember O
(J

inner color

Outer?

Surprise O O

- Some memory for task irrelevant features of a task
relevant object

Q1: How is the irrelevant information

coded? 025

N 0.2]
Surprise trial: ~ £o1s
- Direction report g o

- Note: one data 0.05
point per subject

0 100
Error (degrees)

Hypotheses: ‘ ' ’

Uniform Broad Narrow
Response
distribution  —

-180 0 180 -180 0 180 180 0 180
Distribution Error Error Error
width SD =inf SD>9 sD=9

LL = log likelihood

Smgle component Models AIC = Akaike information criterion

Q1: How is irrelevant information coded?
Q2: Is there a cost to encoding additional
relevant features for one object?

Experiment:

Remember
color ’ ]
—

N=89 Surprise

—

Trials 1-25 = pre-surprise (only color report)
Trial 26 = surprise trial (direction report)
Trial 27-50 = post-surprise (either color or direction report)

[Q2: Is there a cost to encoding additional

relevant features for one object?
- Compared color memory precision of pre-surprise (1-
feature) to post-surprise (2-feature) trials

03 0.25|

Hypothesis | Best fit LL | AIC | M=number of parameters
M=0 ~
E= v | -163 | 327 LL functions
B
Lo
IA B a6 236 || u T
—140! l
-170]
180 50 0
LL N -1094 | 2190 SD of dist.
-
2 Mixture Model W
component ixture Models
2 M=3 N BY NB
+  BU | -98.6 | 203.2 -5 é
la T i
M=2
= TR
+ NU %o 80 7]
1 - 205.2 e g
A sl 100.6 s, Tt dist. SO
2 M=3
+ NB |1 -95.3 | 196.6
}E SR o -~

What if .some subjects enﬁ:odefj the eg. ’ stored as '
orientation, but not the direction?

3 component Mixture Models

Pre: Post:
2% SD:11.2 (.6)z 2 SD=13.4(.8)
T‘; 0 %015
Sors g Paired t-test:
o1 o p <.0001
05 008 Answer: YES

il I
0 100 150 150 100 50 0 50 100 150
Error (degrees)

!
-150 -100 -50 0 5
Error (degrees)

N s 85— NN;B
e -98.3 | 202.6 LL'gl f )
M=4 -105
N NN,B || 180 60 30

-91.2 | 190.4 SD of 37 dist.

oL |

expense of other features

&)+ B8Cs-1331073
e

Q1: How is irrelevant information coded?

- Half of the participants have a coarse encoding of

the irrelevant feature relative to a relevant feature
- The relative likelihood of NN, U to NN, B is .0022

[How can we simulate changes in relevancy?

McAdams & Maunsell (1999)
- Attention modulates the amplitude of tuning

p=rg

curves in Macaque V4s

Oledll Qo8

===~ task relevant

Swan & Wyble (2014)

- Binding Pool model components:
- Types = features (e.g. color, direction)
- Tokens = index representations
- Binding pool = pool of neurons

- Encoding = binding of token and types
- Type activation strength = task relevance

Relative Orentation

Special issue on VWM

Tokens

Encoding

Direction
input
-

= Relevant
= |rrelevant

OOOEOOOO
i |

T Color input

Simulating Retrieval

Il "
T 0 80 0 50 10 180

[l
S50 100 50 0 50 100 150
Error

N
5
v (degreos) Error (degrees)

Surprise trial

Pre surprise Post surprise

(relevant): (irrelevant): (Relevant):
SD: 13.6 (.6) NN, B SD: 17.6 (1)
Discussion:
- Irrelevant features are encoded with variable
quality

- Increasing precision for one feature comes at the

perception, &

V4. The Journal of

Mack, A, (1992). ala), 502534,

. ., CM. . & Mack,
+ Suchow, 1. W, Brady, T.F, Fougnie, D, & Alarez, 013 of (10),5.




The Binding Pool model of VWM: A model for storing

individuated objects in a shared resource pool

Garrett Swan and Brad Wyble
Pennsylvania State University

We are building a model of visual working memory (VWM).

The Binding Pool model is a mechanistic model that accounts for both the
quality and quantity of representations in VWM (Swan & Wyble, 2014)

<

Change detection n
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Same or
different?
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>
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Continuous report

Time

Model components:
* Tokens index stored representations as object-files
* Types represent a stimulus’ features (e.g. color, orientation, etc.)

The Binding |7 ecntatoncinwhion mutire st sra stored
Pool model

of VWM: A
model for
storing
individuated
objectsin a

* Neural Units

Active @ Inactive O

« Bidirectional connections

* Randomized weights

* No synaptic modification

« Storage of information occurs
through sustained activity in the
binding pool

Encoding 1 object with

2 features
shared o
Z, Q0000
N, O g
resource Encoding: B 56 o 2
OOI * One token is activated per ‘ 4 \ 8 S
item B
p » Types and tokens both / Mg /) -
project to the binding pool O Input
* Binding pool nodes Y s ‘ OO0 0000 X
receiving convergent input o B |
are activated T Color
The activated nodes store the @ Input
connection between active n n
Type and Token nodes.
* C,= activated cell assembly Bg = Bp + ZcNeg z Xrlyp Z YoMg
f=1 g=1

Swan, G., & Wyble, B. (2014). The binding pool: a model of shared neural resources for distinct items in visual working memory. Attention, Perception, & Psychophysics

Fougnie, D., Asplund, C. L., Marois, R. (2010). What are the units of storage in visual working memory? Journal of Vision
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Type retrieval:

The cued feature and the
retrieved token project to the
binding pool

The subset of binding pool nodes
then summate their activity at
the type layer

Activation
Level

Types OTOOOOOOO

Original color input

Location

% 0@0000
1t
o
5

Token retrieval:
The cued feature is projected
into the binding pool

The subset of binding pool

nodes then summate their

activity at the token layer
@ Strongly active
@ Weakly active

Tokens
7 Q0000
@)
B N oé
08
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Simulated error distributions

Storing more items

increases the

4000 | Set Set '
2000 | S1Z€ size Varlf:nce of

1 4 retrieved type

’ 905 0° 905 o5 oo sge | activity for each

Responses relative to target | item

Prediction:

Retrieval variability increases as more features are encoded per item

This is a controversial prediction (Fougnie et al., 2010; Oberauer et

al., 2013; vs. Vogel et al., 2001)

Encoding 1 object with 3 features

Tokens

, Q0000
:OQT OC
Input o2
-}‘( o 3
'aie) <]
S klo o-
AN = e .
-810 Olnputé
(@] 3
21O 00000 k5
b | 2
Color &

@) Input

Simulation:
One object with
2,3,and 4
features

N
o

2
Number of features

3 4

Testing predicted cost of adding a feat

ure

* Subjects shown 1 stimulus (arrow) with both a color and a direction
* First block, reported consistently color or direction (between subj.)

* Second block, reported either feature at random

* Control group reported consistently the same feature

Color N =108 Total trials = 50 Block 1 | Block 2
n n THal= 1 2 3 % 2 28 29 Condition | SD (SE) | SD (SE)
Y, =27 Z BsM, 5N, Z XrL < < Control | 12.6(.7) |13.5(.9)
9T LTS LR 5| (5| (g 2] [2] 2] 5] =c Exp. | 13.5(6) [17.7(9), 9.5(4)
p=1 f=1 MEEE HENENEE Color | Color Dir.
Type activity after retrieval of ( ) Condition | Block 1 | Block 2
information from a token is a noisy &l & ? 7| control| sals) 8507)
reconstruction of the original type \ Exp. 8.1(5) |16.6(.6), 9.4(.7)
representation 15oms  10ms  1000ms Feedback Dir. | Color Dir.

=) Mean vecto

Single type A8  Deviation

Type activity is converted to vectors
Mean vector is then computed
Mean vector has two properties:

* Location = retrieved color value
* Vector length = ‘confidence’

€ Length

activation /\

/ color

Oberauer, K., & Eichenberge, S. (2013). Visual working memory declines when more features must be remembered for each object. Memory & Cognition
Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. JEP: Human Perception and Performance

r

Original

Results and Discussion:

Significant main effect of starting feature (p <.0001) and condition (p <

.0001), and interaction between the two (p <.05)

The cost of adding one additional feature on one object is detectable

These results support the prediction of the model that there is a cost

when storing more features of a complex object

These results suggest that features are selectively encoded according to

task demands

* Flexible encoding models can avoid the combinatorial explosion

problem in representational space
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The Binding Pool
Model of Visual
Working Memory

We are building a model of visual working memory (VWM).

The Binding Pool model is a mechanistic model that accounts
for both the quality and quantity of representations in VWM.

Change detection n Same or
= | |different?
[ ]
" : @ @
Continuous report
S
- >
Time

Model components:

* Tokens index stored representations as object-files

* Types represent a stimulus’ features

* The Binding Pool is a shared resource pool of
distributed representations in which multiple
stimuli are stored

@ ° Neural Unit

Tokens “ I « Bidirectional connection
A\ R |/ * Randomized weights
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Encoding: .
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nodes Input
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The Binding Pool Model of Visual Working Memory
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Token Retrieval Token retrleva.I
The cued feature is
Tokens @ @ce* @ projected into the binding
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O c
Binding @ @ -
Pool 0 00 o 8 The subset of binding pool
\O - nodes then summate their
o= activity at the token layer
Color @) Cue
00000000 .
I u Type Retrieval

Type retrieval
The cued feature and the
retrieved token project to
the binding pool

The subset of binding pool
nodes then summate their
activity at the type layer

1.0

Activation
Level

WV

e 90000000
Original Type input

Tokens @ @ee@
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Color o Cwe
00000000
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Type activity after retrieval of
information from a token is a
noisy reconstruction of the
original type representation

=) Mean vecto

Single type
AB Deviation

Type activity is converted to vectors

Mean vector is then computed

Mean vector has two properties:

¢ Location = retrieved color value

* Vector length = ‘confidence’

activation /\

€ Length

Simulated error distributions

4000 .
2000 l Set size 1
0

-180° -90 0 90 180

4000
2000 Set size 4
0

-180° -90° 0° 90° 180

Responses relative to target

°

Storing more items increases
the variance of retrieved type
activity for each item

The model data was analyzed with
a mixture model (Bays et al., 2009)

Continuous Variability =~ Swapping error  Guessing
report task

Retrieval Swapping  Guessing
As set size variability errors errors
increases, the 20,

: 8 [+ Binding ool model
model’s retrieval | . £04 [~ ovecrar a0
variability and the Em 8od
chance of swap B2 - go.z

. T ¢ k<l
and guessing S1d ¢ ruse: | 5 0.4
. ) 3281 [ &
errors increase o D —— I
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Unchanged item Changed item

comparison  comparison Change detection task
13 F
i ‘Change’ ‘Change’
i . .
i o Each item in the probe
i

display is compared to
the retrieved item at that
location

Confidence (g)

FA = false alarm

CR = correct rejection

AB = retrieved location — unchanged item
AB* = retrieved location — changed item
=== = threshold

The probability of
the model reporting
a ‘change’is
dependent upon the
magnitude of
change

 »+ Binding Pool model
= Keshvari et al. (2013)
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Proportion of Responses

.- RMSE: 0.0734
0 3 72 108 144 180

As set size increases,
the model’s
performance
degrades

Proportion of Responding ‘Change’

Magnitude of Change

There are two forms of capacity in the Binding Pool model:
-Fixed capacity of information storage: the quality of all
memories is dependent upon the size of the binding pool.
-Variable number of items: The quantity of items stored per
trial is variable: reflecting attentional fluctuations and encoding
duration.

The precision of each memory trace results from the combination
of these two limits on each trial. These limits enable the model to
Qimulate existing data and generate predictions.

« Bays, P. M., Catalao, R. F. G., & Husain, M. (2009). The precision of visual working memory
is set by allocation of a shared resousce. Journal of Vision. 9(10). 1-11

* Keshvari, S., van den Berg, R., & Ma, W. J. (2013). No evidence for an item limit in change
detection. PLoS Computational Biology, 9(2)




Visual working memory (VWM) is a complex process of encoding
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Retrieval of Type

Simultaneously and sequentially presented colors exhibit similar
within-task interference for working memory representations

Experiment:

and retrieving information. Current models provide a theoretical Retrieval: . . .
framework for understanding how information is stored'2, but Tokens 9@©® — Inf i ) tored i ) Sequent|a| vs. simultaneous presentatlon
. . few models are explicit about the underlying neural mechanisms l ‘Q Retrieval ntormation stored in a given ) ) )
signal Token can be reconstructed at A property of this model is that simultaneously presented
VI sion of VWM. Binding .‘ .. the Type laver. stimuli are encoded serially.
. A neural simulation can generate more explicit predictions about Pool 9 00 ype layer. Thus. a prediction is that er;codin of simultaneous and
Sc | e n Ces the structure of memory and the time course of encoding. . . ! p . . 8 L
The same connections which sequential stimuli should produce similar patterns of errors.
. had been used to encode the
H . Types
SOC | ety 20 1 3 Model a.rChIteCture' ) Yres 00000000 type representation into the sim. s n=50
* Tokens index stored representations Noisy Retrieval binding pool are now activated i Trials = 132
* Types represent stimulus features Y =Y + EM N. .B in the reverse direction o w | so0ms Slocked =sleq3/5ir;\5
. . . - et sizes=1, 3, an
. ¢ The Binding pool is a shared resource pool of a a g BTt BB 5] 900 ms
Sl mu |ta neou Sl distributed representations in which multiple 4000 ms

The distributed nature of the Binding Pool
results in a noisy retrieval of the original
Type representation.
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stimuli are stored

y and
sequentially

Tokens = tokens project to
overlapping subsets of the

Typically, the original Type input is activated
to a higher degree than other Type nodes.

Binding Pool =
stores distributed Type

4000 ms
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Exploring
Localized
Attentional
Interference in
the Context of a
Multiple
Location RSVP
Task.

Introduction: Rapidly presented targets produce
changes in the deployment of attention

Attentional Blink

Attentional blink: T1 processing reduces T2
processing within 200 to 500 ms

Exploring Localized Attentional Interference in the

Context of a Multiple Location RSVP Task.

Garrett Swan and Brad Wyble
The Pennsylvania State University

Is lag 1 sparing present in spatially offset
stimuli?

Visser et al (1999) E

=

g 9% ece
-RSVP stream ECE g % e
-4 conditions U 5 o
(CC, EE, CE, EC) H
-Found no Lag 1 1° . &
Sparing with E = eccentric % ¥
spatial offset C= Centric £ 40

(A
100 300 700
T1 - T2 lag (ms)

Hypothesis: LAl interferes with T2
perception at lag 1 when T2 appears within
approximately 2° of T1

@ Excitation
@ Inhibition

Experiment 1: Parametrically measure the
extent of an attentional window

Methods: Replicated Visser et al (1999) paradigm
with increased eccentricities (1-8°)

Experiment 3: Compensating for decreased
perceptual acuity in the periphery

TTT T T
1° 2° 3° 5° 7°

Combined Spatial Offset Conditions

Stimuli:

Methods: n =75

09

>08
Results: 8or
Lag (p < .001) gor %
DVA (p <.001) <. o
Lag x DVA (p =.38) 'é 350

01 —-7°

T T T
3

L;g
Conclusions: Increased stimuli size relative to
eccentricity increased peripheral perception.

General conclusions:
-Experiments 1-5 no LAI with spatial offset at lag 1
-Experiment 2 failed to replicate Visser et al (1999)

-Experiment 3 found lag 1 sparing and Attentional
blink in periphery

-Experiments 4-5 demonstrates that expectation did
not produce LAI with spatial offset at lag 1
-Experiment 5 demonstrates that saliency did not
produce LAl at lag 1

shih (2000) 20=A5} 100 ms Combined Spatial Offset Conditions
A - -
09 = 30&
-Dual RSVP streams éi N Rest(xlts: ) §
-2 conditions P N /::::::u Lag (p <.001 e
= ) o = —-1:2°
(same or different loc.) ¥ = DVA (p <.001) EZZ ~3:5°
-Found Lag 1 “o U s o s ..o |LagxDVA(p<.001) o e
. . + T Lag (SOA = Lag x 71.4 ms) N 2 3 i H ; ‘7
sparing with Lag
spatial offset 35° Conclusions: LAl was not found with spatial offset
’ atlag 1.
One possible explanation: ! Experiment 2: Attempt to replicate
Localized attentional interference P s Visser et al (1999)
(Mounts 2000) MY i/l"‘ ¥
o
AREETERL Methods: White stimuli on dark background
- n=12 '
& ‘v .& 308
] Results: P
P Lag (p <.001) 8o ~CE
Distance (in degrees) bl o
P Condition (p < .007) g e
(it Lag x Condition (p <.001) . ~EE
Target array 4 et ) o 1 & 5 i & & 7
Lag
-2 targets presented in highlighted o Conclusions: Failure to fully replicate Visser et al
Distance (in dz;«:) ¢

locations at 67ms temporal offset
-T2 performance varied as a function of T1 proximity

(1999). Found lag 1 sparing with spatial offset.

Experiment 4: Minimize potential practice
effects from block design.

Methods: CE and CC appear within-block.

n=>54 Spatial Offset Condition

Results: ot

Lag (p <.001) 8or

DVA (p < .001) oo

Lag x DVA (p <.001) <. g
Eos §
S 02 —-3:5°

IR
Conclusions: In a within-block design, LAl was not
found with spatial offset at lag 1.

Discussion:

-In RSVP, categorically defined targets
are not sufficient to produce LAI

-Lag 1 sparing is not limited by
immediate spatial proximity

-In RSVP, salient targets are not
sufficient to produce LAI

Future Direction:
-Add perceptual noise to paradigm to find the
boundary condition of LAI

Experiment 5: Emulating Mounts (2000) which

used a salient T1 Spatial Offset Condition

Methods: Red T1 Fos

Results: g %
Lag (p <.001) oo .
DVA (p <.001) B ——s
Lag x DVA (p <.007) o -

g -
Conclusions: A salient T1 was not sufficient to
produce a LAl with spatial offset at lag 1.
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