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Memory for a single object has differently variable precisions
for relevant and irrelevant features
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Working memory is a limited resource. To further
characterize its limitations, it is vital to understand
exactly what is encoded about a visual object beyond
the “relevant” features probed in a particular task. We
measured the memory quality of a task-irrelevant
feature of an attended object by coupling a delayed
estimation task with a surprise test. Participants were
presented with a single colored arrow and were asked to
retrieve just its color for the first half of the experiment
before unexpectedly being asked to report its direction.
Mixture modeling of the data revealed that participants
had highly variable precision on the surprise test,
indicating a coarse-grained memory for the irrelevant
feature. Following the surprise test, all participants could
precisely recall the arrow’s direction; however, this
improvement in direction memory came at a cost in
precision for color memory even though only a single
object was being remembered. We attribute these
findings to varying levels of attention to different
features during memory encoding.

Human working memory is resource limited, and
understanding the nature of these limits is a major goal
of working memory research (Baddeley, 2003; Brady,
Konkle, & Alvarez, 2011; Luck & Vogel, 2013; Ma,
Husain, & Bays, 2014). Quantitatively exploring
human memory performance by measuring the limits
on capacity and precision provides important clues
about the underlying neural mechanisms of memory
storage. One measured limit has been characterized as
the number of simple objects (about three to four;
Cowan, 2001) that can be stored in visual working
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memory.' Furthermore, when a task involves attending
to particular objects in a scene, it can happen that task-
irrelevant objects are not remembered at all, even when
they are salient (Rock, Linnett, Grant, & Mack, 1992;
Simons & Chabris, 1999). When task-irrelevant objects
do attract attention, this often comes at the expense of
maintaining task-relevant information (Asplund, Todd,
Snyder, Gilbert, & Marois, 2010; Horstmann, 2005,
2006; Yin et al., 2012). Additionally, information that
was once task relevant does not necessarily remain in
memory (Chen & Wyble, 2015; Triesch, Ballard,
Hayhoe, & Sullivan, 2003). These findings demonstrate
natural strategies for efficiently using limited memory
resources.

We often perceive the world without an explicit
expectation of what information we will need to
remember for later use, and very little is known about
how task-irrelevant features of attended objects are
represented in memory. Even the simplest objects
contain many features such as size, luminance, per-
ceived depth, hue, texture, and shape. Therefore, given
the limited capacity of memory, it is important to
determine how these various features of an attended
object are stored in memory, how precisely they are
stored, and how their storage depends on task
relevance. This understanding ultimately is critical for
building better models of working memory.

Multiple hypotheses can be made about the repre-
sentation of task-irrelevant features. One straightfor-
ward possibility is that objects are encoded holistically,
such that if an object is encoded, then all of its features
are fully represented (Luck & Vogel, 1997; Zhang &
Luck, 2008; see A in Figure 1). Another straightfor-
ward possibility is that only task-relevant information
is represented, leading to a highly efficient representa-
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Figure 1. lllustration of how well relevant (i.e., color) and irrelevant features could be encoded into memory according to three
theories. (A) refers to memory storage in which all features are fully represented. (B) refers to the memory storage of only the task-
relevant feature. (C) refers to the full representation of relevant features, with coarse coding of task-irrelevant features.

tion for that feature but complete amnesia for task-
irrelevant information (Awh, Vogel, & Oh, 2006; Chun,
2011; Serences, Ester, Vogel, & Awh, 2009; Woodman
& Vogel, 2008; see B in Figure 1).

If all features were fully represented, then perfor-
mance on tasks with a variable number of features per
object would depend only on the number of objects, as
found by Luck and Vogel (1997). However, several
findings have challenged this result (e.g., Chen &
Wyble, 2015; Fougnie, Asplund, & Marois, 2010;
Hardman & Cowan, 2015; Keshvari, van den Berg, &
Ma, 2013; Oberauer & Eichenberger, 2013; Wheeler &
Treisman, 2002). Furthermore, it has been demon-
strated using delayed estimation that for a given
stimulus with multiple relevant features, one feature
might be well remembered while another is poorly
remembered (Bays, Wu, & Husain, 2011; Fougnie &
Alvarez, 2011). Thus, the strong version of the holistic
encoding theory seems unlikely.

On the other hand, the hypothesis that memory
represents only task-relevant information is also
unlikely because task-irrelevant features can influence
reaction time (T. Gao, Gao, Li, Sun, & Shen, 2011;
Kahneman, Treisman, & Gibbs, 1992; Stroop, 1935)
and memory precision (Marshall & Bays, 2013).
Furthermore, task-irrelevant features of objects have
been shown to elicit neurophysiological responses (Z.
Gao et al., 2009; Xu, 2010).

With both straightforward hypotheses unlikely, we
propose that task-irrelevant features may sometimes be
encoded coarsely—that is, at lower levels of precision
than relevant features (see C in Figure 1). Coarse
coding would enable memory to focus its limited
resources on the task-relevant features of an object but
also have sufficient memory for task-irrelevant features
to support unanticipated task requirements.

In this article, we present direct measurements of
the quality of a task-irrelevant feature’s representa-
tion and of the cost of adding an extra task-relevant
feature on memory precision of another feature. We
used a display containing only a single object to
ensure that memory load was below the typically
measured memory load for objects. To test memory
for task-irrelevant features, we used the surprise test
methodology of Rock et al. (1992), which unexpect-
edly asks the participant to recall a piece of
information that was encountered while that infor-
mation was irrelevant to the task. Recently, Eitam,
Yeshurun, and Hassan (2013) used this technique and
found that participants produced more errors when
asked to recognize a task-irrelevant color of a two-
colored stimulus. Eitam, Shoval, and Yeshurun
(2015) later found that participants could recognize
the irrelevant color of a single-colored stimulus,
which supports the holistic encoding hypothesis.
However, good performance in such forced-choice
tasks does not necessarily mean that the memory is
precise. It could be that the memory for an irrelevant
color is coarsely coded but still sufficiently precise to
select the correct color from highly dissimilar colors
in a forced-choice response.

To measure the precision of memory for task-
irrelevant features, we paired the surprise test meth-
odology with delayed estimation, which requires
participants to reconstruct a specific feature value of a
presented stimulus by selecting that feature along a
continuous scale (Prinzmetal, Amiri, Allen, & Edwards,
1998; Wilken & Ma, 2004). This technique provides
within-trial measurements of memory error relative to
the true value of the stimulus. Furthermore, to obtain
the cleanest possible measure of the effect of relevance,
we used memory for a single object with clearly
dissociable features, and we trained participants on

Downloaded From: http://jov.arvojour nals.or g/pdfaccess.ashx?url=/data/Jour nals’JOV/934914/ on 04/18/2016



Journal of Vision (2016) 16(3):32, 1-12

1 r'\a\S)ZB'

_ | Trial 26

N e

100ms

150ms

Tri%

;Y_/

Retention:
1000ms

Swan, Collins, & Wyble 3

Feedback

A Y

Feedback

A

% llor i B

Feedback

Feedback

A A WY

Figure 2. lllustration of the task. Participants were presented with a colored arrow for 150 ms. After the offset of the arrow, a mask
comprising random color and oriented lines was presented for 100 ms. After a retention interval of 1000 ms in which the screen was
empty, participants responded either by selecting a hue from a color wheel or by selecting a direction using a gray wheel. After
providing responses, participants were given feedback about their response. The color wheel and task were generated using

modifications of MemToolbox (Suchow et al., 2013).

reporting the task-irrelevant feature prior to the start of
the experiment.

Our study used displays with a colored arrow in
which we manipulated color and direction (Figure 2).
One of these features (color) remained task relevant
throughout the experiment, while the other feature
(direction) unexpectedly switched from irrelevant to
relevant halfway through the experiment. This
provided an explicit measurement of the quality of
the memory for the initially task-irrelevant feature
the first time it was probed, which we termed the
surprise trial. The postsurprise trials then measured
the cost on the always-relevant feature when the
other feature became relevant halfway through the
experiment.

Experiment design and analysis

Participants

To obtain a sample of 150 participants after
replacing excluded participants, a total of 175 partic-
ipants were recruited from the participant pool at the
Pennsylvania State University and received course
credit for their participation. All participants had
normal or corrected-to-normal vision and could read
American English. The experiments conformed to the
Declaration of Helsinki and were approved by the
Pennsylvania State University Institutional Review
Board ethics committee. A total of 22 participants were

excluded for having poor perceptual matching accuracy
(see below), and three participants were excluded for
having poor accuracy in the second block of trials (one
with postsurprise color ¢ =63, one with more than 40%
guess rate postsurprise direction, and one with post-
surprise direction ¢ = 83). Note that the inclusion of the
25 excluded participants does not affect the significance
of the cost between pre- and postsurprise color
precision and the results of the model fitting to the
surprise trial data.

Apparatus

The experiment was run using Matlab 7.9.0 (build
R2009b) with Psychtoolbox (Brainard, 1997; Pelli,
1997) on Windows XP (Microsoft, Redmond, WA).
The screen resolution was set to 1024 X 768 at a 75-Hz
refresh rate on cathode ray tube monitors with a
diagonal screen size of 40 cm. Participants were
situated in chin rests located 50 cm from the monitor.

Stimuli

The stimulus consisted of an arrow with a direction
and color feature. The arrow was constructed using a
rectangle with the dimensions 5.4° and 1.2° of visual
angle and an isosceles triangle with a 1.7° base and 1.2°
height, which combined to form an arrow with a height
of 6.2°. Direction was chosen from 360° as indicated by
the arrowhead. The color of the arrow was drawn from
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a series of 360 colors in a one-dimensional selection
from CIE L*a*b* color space provided by Memtool-
Box (Suchow, Brady, Fougnie, & Alvarez, 2013). The
arrow was centered at fixation during the experimental
trials.

Perceptual matching

To ensure that participants knew how to produce
estimates of color and direction, a perceptual
matching task preceded the experimental trials. This
block was labeled Experiment 1. In this task, two
stimuli appeared along the horizontal meridian
separated by 10.8° of visual angle. Participants were
instructed to match a single feature of the left
stimulus (i.e., patch for color matching and arrow for
direction matching) to the right stimulus by selecting
a position on the surrounding circle with a mouse
click. The colors and directions of the right stimulus
were discretely sampled (i.e., 36° difference) to cover
the extent of the wheel and were presented in a
random order that was fixed across participants. The
appearance of the left circle changed depending on
which feature was being matched. The wheel was
colored for color matching and solid gray for
direction matching. This difference in color wheel
presentation was also used during the delayed
estimation portion of the experiment. When partic-
ipants moved their mouse to the surrounding wheel,
the feature of the stimulus changed to represent the
appropriate feature (e.g., the patch became the color
associated with the location of the mouse for color
retrieval, or the arrow pointed at the location of the
mouse for direction retrieval). Participants were free
to move the mouse until satisfied with their answer,
and the left stimulus changed continuously to
represent the direction or color indicated by the
current mouse position. The orientation of the color
wheel was unchanged across trials throughout the
experiment for both the perceptual matching and the
delayed estimation blocks.

When participants were satisfied that the stimulus on
the left matched the stimulus on the right, they would
click on the wheel using the left mouse button to lock in
their choice. After a participant made a response, the
next trial began in 500 ms. Participants completed two
blocks of 10 trials. The only difference between blocks
was whether participants were matching the color or
direction of the stimulus.

Error was calculated by taking the difference
between the reported angle and the presented angle.
Participants with errors above 10° on any of the last
three perceptual matching trials for reporting direction
(i.e., 22 participants) were excluded to ensure that
participants could understand and perform the task
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requirements on the surprise trial. After exclusion, we
found that the average of the absolute value of the
error in matching direction over the last three trials was
2.1°. Note that participants were much more precise on
this perceptual matching task than on the delayed
estimation task (e.g., compare with Figure 3), which
formed our main experiment; this was expected from
previous work (Brady, Konkle, Gill, Oliva, & Alvarez,
2013).

Delayed estimation

After completing the perceptual matching task,
participants began the experimental trials that
constituted the delayed estimation task, which was
labeled Experiment 2. Participants were instructed at
the beginning of this portion of the experiment that
their task was to remember the color of the arrow
(see the Appendix for exact instructions presented to
participants). For each trial, following a blank
presentation for 300 ms, an arrow appeared for 150
ms. Immediately following the stimulus duration, a
mask of 50 randomly oriented and colored lines was
presented with a radius of 5.4° of visual angle for 100
ms. Next, there was a retention interval of 1000 ms,
followed by the response screen. The response screen
was similar to the perceptual matching task except
that there was only a single stimulus in the center of
the screen. After a response was made, a white line
appeared at the location of the mouse click,
extending outward from the wheel; the mouse
pointer relocated to the center of this line. Partici-
pants were asked to report their confidence by
clicking on the white line, with locations at the
farthest extent of the white line indicating maximum
confidence. Confidence scores were collected, al-
though those data are not discussed here. After
selecting a confidence value, feedback was provided
as to the original stimulus. For the feedback screen
two arrows were presented, with the arrow on the left
mirroring the response of the participant and the
arrow on the right being the presented arrow. Text
indicated which was which. The next trial began 500
ms after a mouse click.

Participants completed six practice trials and then
50 experimental trials. The practice trials and exper-
imental trials 1 through 25 asked participants to
report only color. Trial 26 asked participants to report
direction, with the following message appearing
between the surrounding wheel and the central
stimulus: “This is a surprise test. What was the
direction of the arrow?” For the remaining trials
(trials 27-50), participants were asked at random to
report either color or direction.
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Both features were recalled by making a selection
from a circle, and memory error was computed as the
angular difference between the correct value (color or
direction) and the reported value. A simple measure of
the participants’ performance is the mean of the
absolute value of the errors, as shown trial by trial in
Figure 3. On the surprise trial, where participants were
unexpectedly asked to report the direction, their
average error was quite poor. Their precision in
reporting direction improved on the first postsurprise
trial and then remained stable. However, this in-
creased precision in reporting direction came at the
expense of worse precision in reporting color, as is
visible in Figure 3 and is quantified below and in the
Appendix.

A fuller picture of the changes in recall precision is
shown in Figure 4, which shows distributions of errors
for color and for direction in three portions of trials:
presurprise, surprise, and postsurprise. First, we
observe that the postsurprise color recall and the
postsurprise direction recall are peaked near zero with
only a small tail. This indicates that the memory system
is well within its capacity limits regarding the number
of objects and features even when participants are
reporting both color and direction (Bays, Catalao, &
Husain, 2009; Zhang & Luck, 2008).

However, the surprise trial direction responses, for
which there is one trial per participant, are qualita-
tively different from the other distributions. Most
notably, the surprise trial data have a long tail out to
the largest error values. The narrow peak in the
middle suggests that at least some participants stored
the task-irrelevant feature precisely. The complete
data set from this experiment is analyzed for the task-
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relevant feature first, followed by the task-irrelevant
feature.

Memory quality for the always-relevant feature

After the surprise trial, the average error of
participants’ reports of direction improved dramati-
cally. This suggests that a shift in expectation about
stimulus reporting changed the participants’ attentional
set such that they encoded a more precise representa-
tion of the initially task-irrelevant feature. To deter-
mine whether this change in the attentional set
produced a cost for memory of the arrow’s color, we
compared the memory quality for color between the
pre- and postsurprise trial data as follows.

To allow for interparticipant variability, for each
participant we fit separately the pre- and postsurprise
trial distribution of errors using the two-component
mixture model of Zhang and Luck (2008; henceforth
referred to as the ZL model):

1
K) + P, o (1)
where the mixture model is a combination of a von
Mises distribution, M(x | k), with a freely varying
concentration parameter (x), and a uniform distribu-
tion, which is assumed to result from guessing. The
concentration parameter was converted from x to
circular standard deviation (¢) in degrees (Fisher,
1995):

p(xlic, Py) = (1 — P,)M(x

180 1 (x)
o(k) = — —2In To(x)

(2)

where /y(x) and /,(x) are modified Bessel functions. The
width of the von Mises distribution (¢) and the
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Figure 3. Each data point represents the mean absolute value of the error for all participants on a given trial. For the first 25 trials,
participants were consistently asked the color of the presented color arrow. On trial 26, participants were given a surprise test, which
probed their memory for the direction of the arrow. For the remaining trials, participants could be asked about either the color or the
direction of the arrow. Error bars denote standard errors.
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Figure 4. Histograms of error distributions across participants for both color and direction recall in presurprise, surprise, and
postsurprise trials. Note that the surprise trial was always direction recall and that each count represents a single data point from a
participant. Also note that it is difficult to see the small percentage of data points in the tails of the presurprise color and postsurprise
color and direction distributions.

proportion of guesses (P,) were fit to the data using considered and eliminated the possibility that this
maximization of the likelihood: decline in color precision was the result of a gradual
Py decline in color precision across the entire set of 50
_ Z In (p(x,-|r< Pu)) 3) trials (see the Appendix). Similarly, this difference in
18

where M refers to the total number of trials for a given . ***p <.001
participant and condition. 16.5

The proportion of guesses was quite small for
presurprise (M =0.015, SEM = 0.003) and postsurprise 7
(M =0.032, SEM = 0.006) color responses. This was °_
expected given the low-load nature of the task. b 1857
Similarly, participants were precise in reporting the
color in both presurprise (M = 12.9°, SEM = (0.26) and 127
postsurprise (M = 15.3°, SEM = 0.45; Figure 5) trials 054 1
but had worse precision postsurprise. T -

To determine the significance of the cost in precision 0
for color when direction became relevant, we applied a Pre-Sur. Post-Sur. Post-Sur.
paired ¢ test for the difference between the pre- and Color Color Direction
postsurprise fitted widths for color responses per
participant: #(149) = 5.2, p < 0.001, 95% confidence Figure 5. Average fitted standard deviation parameters across
interval [1.5, 3.4]. This highly significant effect indicates participants using the ZL model. The difference between the
that color report became less precise when participants pre- and postsurprise color conditions represents the cost of

adopted the requirement to report direction as well. We also having to report direction in the postsurprise trials.
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Figure 6. Histogram of responses with model fits placed onto
the data. (A) ZL_s model and VP model fit to the surprise trial
data across participants. (B) Fits of the ZL_s model (red) and the
VP model (blue) to the first postsurprise direction trial data
across participants.

precision was found in a fixed effects model comparison
analysis (see the Appendix). Furthermore, there is a
significant difference between the pre- and postsurprise
proportion of guesses for color responses per partici-
pant, #(149) = 2.6, p < 0.01, 95% confidence interval
[0.004, 0.03], although the number of guesses is small in
both cases.

In an additional control experiment, the feature
relevance conditions were reversed such that the color
of the arrow was the initially task-irrelevant feature
during the first 25 trials. When fitting the ZL model to
the presurprise and postsurprise direction data, partic-
ipants (N = 30) were less precise postsurprise (M =
10.1°, SEM =0.73) than they were presurprise (M =8.2,
SEM = 0.44). This difference was significant in a paired
t test, #(29) = 3.2, p < 0.005, 95% confidence interval
[0.63, 3.1], which further corroborates our conclusion
that there is a cost to encoding an additional feature in
a single, simple object.
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Memory quality for the initially task-irrelevant
feature

For the initially task-irrelevant feature (direction),
we first fitted the postsurprise direction reports for each
participant, again with the ZL model (Zhang & Luck,
2008), obtaining a precision averaged over participants
of 10.8° (SEM = 0.32) and a small uniform component
(M =0.025, SEM = 0.005). These properties quantify
the precision of direction memory when both direction
and color were relevant.

Then we examined participants’ responses for the
direction of the arrow in the surprise trial, when
direction was considered task irrelevant from the
perspective of the participant at the time it was
observed. Because there was one surprise trial per
participant, we fitted the two-component ZL model to
the data pooled over participants using maximum
likelihood estimation, with

LL(x,P,) = Zln(p(x,-yrc, Pu)> (4)

where N refers to the total number of participants and i
labels participants. We refer to this version of the ZL
model that is across participants as the ZL_s model.
The precision and guess rate for the responses on the
surprise trial were found to be 26.1° and 0.42,
respectively (Figure 6a).

To contrast the precision of direction on the surprise
trial to that on the postsurprise trials, we compared the
surprise trial response to the response in the first
postsurprise trial in which participants reported the
direction of the arrow. This is the most conservative
comparison with the surprise trial and highlights how
quickly direction shifted from task irrelevant to
relevant. The fit for the first postsurprise direction trial
using the ZL_s model produced a precision and guess
rate of 12.1° and 0.07, respectively (Figure 6b).

To determine whether there is a reliable difference in
the fit likelihoods for the two models (i.e., surprise and
the first postsurprise ZL _s fits), a permutation over
differences in log likelihood (LL) was performed. First,
the LL was computed for the best fit for the surprise
data to the ZL_s model. Then, the LL was computed
for the same data but with the parameters obtained for
the best fit to the postsurprise data (i.e., a model fit to a
different data set). The difference (70.5) between these
LL values is good evidence that the surprise and
postsurprise data are drawn from different distribu-
tions. To produce a null distribution, the data points
between these two trial types were randomly permuted
10,000 times. For each permutation, new ZL_s models
were fit to each of the two shuffled trial sets and the
same LL difference was computed. A comparison of
the observed difference between the empirically derived
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Figure 7. Results of the bootstrapped resampling 1,500 times. (A) Scatter plot of the parameters of the VP model fit. (B) Distribution
of precision in the VP model. The dark lines correspond to the observed precision of the actual data, with the vertical line

corresponding to the mean precision (i.e., J).

difference and the null distribution revealed that zero of
the permutated differences were larger than the
observed difference for both the surprise and first
postsurprise direction data, which indicates at least p <
0.0001.

This procedure was then repeated for the converse
case (i.e., comparing the difference in LLs for when the
first postsurprise trial data were fit to the first
postsurprise trial data and the surprise trial data) and
revealed that none of the 10,000 null distribution values
were as extreme as the observed difference. These two
tests demonstrate that the surprise and postsurprise
distributions are substantially and significantly differ-
ent, which indicates that participants are less precise on
the surprise trial relative to the first postsurprise trial
that probes direction.

The ZL mixture model allows for two levels of
precision: high and zero (i.e., guessing). An alternative
approach is to allow precision to vary continuously as
in the variable precision (VP) model of van den Berg et
al. (2012). In this model, the precision of a response on
each trial is modeled by drawing a value from a gamma
distribution with a mean precision J and scale
parameter 7. Furthermore, it is assumed that responses
are affected by sensorimotor noise, which is modeled by
convolution with a von Mises distribution with
concentration parameter x, (see the Appendix for a full
specification of the model).

In van den Berg et al. (2012), J is dependent on a set
size parameter, which we fixed at 1 given that only a
single stimulus was presented. Furthermore, we fixed
the width of the sensorimotor noise distribution «, at
the empirically measured value determined by the
perceptual matching task for the direction feature. The

value was obtained by a maximum likelihood function
fit to the data on the last three trials pooled over all 175
participants using the ZL mixture model.” The value of
K, corresponds to 2.9°. Fixing these parameters reduced
the number of free parameters to two, as in the two-
component ZL mixture model.

The fit of the VP model to the surprise trial data is
displayed in Figure 6. In Figure 7A and B, parameters
were bootstrapped by resampling 1,500 times the
surprise trial data and the first postsurprise trial in
which direction was reported. The difference in the
parameter estimates for the surprise and first postsur-
prise trials is visually obvious, but to determine
significance a permutation test on the mean precision
parameter J was computed. In 10,000 permutations of
the data, no permutations exceeded the difference of
the actual data. Thus, like the ZL_s fit, the VP model
shows that participants were less precise for direction
on the surprise trial than on the postsurprise trials.
Furthermore, the fits to the VP model for the surprise
data reveal a substantial proportion of very low
precision responses; this is analogous to the high
guessing rate in the fit by the ZL_s model to the same
data. (See the Appendix for tables of parameter values
for both ZL._s and VP models.)

To see whether the VP or the ZL_s model best
characterizes the data, the LL can be compared
between the models because they have the same number
of free parameters, having fixed the set size and
sensorimotor noise parameters of the VP model (see
above). The VP model produced a higher LL (LL =
—215.9) than the Z1._s model (LL =—217) when fit to
the surprise trial data, suggesting that the VP model
provides a better fit, though the difference of 1.1 LL
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units is not strong support. However, the conclusion of
these analyses is similar regardless of using the VP or
Z1. models because both indicate a more coarsely
grained representation of direction in the surprise trials.
Our conclusion, therefore, is that variability of
participants’ precision for the task-irrelevant feature is
greatly increased on the surprise trial. Furthermore, the
training procedure used at the beginning of the
experiment provided reassurance that participants
understood how to report direction very precisely using
the mouse. Thus, the inaccuracy is not due to
uncertainty about how to perform the task.

In the field of working memory research, almost
everything that is known was determined by measuring
our ability to store and retrieve task-relevant informa-
tion about stimuli. However, stimuli always contain
additional features that are irrelevant to the task, and
our understanding of how these irrelevant features are
stored has been largely unexplored. The goals of our
study were (a) to measure the precision of memory for
an irrelevant feature and (b) to determine the costs in
precision of memory for a relevant feature when a
previously irrelevant feature becomes relevant.

Our results demonstrate that the direction of a
presented colored arrow could be recalled from
memory despite being task irrelevant, though there was
increased variability in precision. Furthermore, there
was a measurable cost for adding direction to the
memory set, even though only a single object was being
stored. Thus, our data demonstrate a tradeoff between
the quality of a memory and the number of features
that need to be encoded even at a set size of 1 (see also
Palmer, Boston, & Moore, 2015).

Our conclusion regarding the cost of adding features
to memory appears to be inconsistent with some other
results in the literature. For example, Olson and Jiang
(2002) found in a change detection task that integrating
features from different visual domains (e.g., size and
orientation) does not produce a cost in memory
performance. One possibility for the difference is that
Olson and Jiang used change detection with categor-
ically distinct stimuli, which may not have had the
resolution to distinguish different levels of memory
quality. Similarly, the results we found appear to be
inconsistent with the results from Marshall and Bays
(2013), who found equivalent memory precision for
conditions in which one or two features of an oriented
color bar were task relevant. However, there are two
key differences between our design and theirs. First,
four objects were presented in their task compared with
one in ours; this may have caused responses to be too
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noisy to accurately detect a moderate cost. Second, in
their single-feature condition, participants had to
simultaneously remember the color of one set of objects
and the orientation of the other set of objects. The
requirement of remembering one feature from one
object and a different feature from a different object
may not have been achievable by the participants, or it
may have been less effortful for participants to encode
both features for all four objects than to try to allocate
memory resources differently between the two sets of
objects.

Another recent finding from our lab revealed very
poor accuracy in reporting task-relevant features of an
attended object that participants did not expect to
report (Chen & Wyble, 2015). That work used a four-
alternative forced choice and thus could not measure
memory precision. However, participants were often
nearly at chance in answering the surprise questions,
which suggests that almost all of the subjects were
guessing. Furthermore, the task used by Chen and
Wyble had four stimuli instead of one. The distinction
between that study and the present one suggests that
when participants are presented with multiple objects,
other features may consume additional memory re-
sources, thus further reducing the resources allocated to
irrelevant features. For example, the number of objects
and their spatial distribution may also consume
resources even though that information is irrelevant. In
support of this idea, it has been shown that individuals
store ensemble statistics when shown a group of objects
(Brady & Alvarez, 2011). It is important to consider
that a great deal of irrelevant information is present in
even the simplest visual display. Future work will need
to explore how task demands affect the encoding of
these various forms of memory that typically are not
measured.

Our results provide support for our coarse coding
hypothesis, which predicted that participants would
have some memory for the irrelevant feature, although
memory for this feature would be impoverished relative
to memory for a relevant feature. This finding argues
against hypotheses in which participants store memory
for features of an object in an all-or-none fashion (Luck
& Vogel, 1997; Serences et al., 2009) and hypotheses
that only relevant features are encoded (Awh et al.,
2006; Chun, 2011). Our finding is corroborated by
monkey neurophysiological research in which attention
was found to be a modulator of the amplitude of a
neuron’s tuning curve (McAdams & Maunsell, 1999),
which would alter the relative strength of different
features in memory according to their relevance.
However, contrary to the simplest coarse coding
hypothesis (C in Figure 1), participants were variable in
the precision of their memories for the irrelevant
feature. It is worth noting that a limitation of the design
presented here is that participants were pretrained on
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how to respond to the initially task-irrelevant feature.
However, the pretraining is essential to ensure that the
coarse memory retrieval in the surprise trial was not
due to participants’ confusion about how to report
direction. Yet, despite this training, participants
responded with degraded precision when direction was
thought to be irrelevant.

Our findings provide new constraints on how we
should theorize about capacity limits of visual working
memory. First, we demonstrated that different features
of an attended object can be represented with variable
levels of precision according to task demands, which
builds on current theories that single features of
different objects are encoded with variable levels of
precision (van den Berg, Shin, Chou, George, & Ma,
2012). Additionally, the variability of precision for a
given feature seems to be related to how that feature is
encoded into long-term memory (Fan & Turk-Browne,
2013). This finding also extends previous research that
has shown that a cued object can be retrieved with
greater precision than an uncued object (Bays, 2014;
Bays, Gorgoraptis, Wee, Marshall, & Husain, 2011) to
suggest that such cueing is similarly effective for
features within an object. Our findings were obtained
even though the information to be stored concerns only
a single object, which is far below typical estimates of
working memory capacity.

Our results also show that even distinct feature
dimensions (i.e., color and direction) interact at the
level of memory representations, as demonstrated by
the reduction in memory precision for color once
direction became relevant to the task. Whether this
interaction occurs because of shared neural resources
for memory operations as predicted by the binding
pool (Swan & Wyble, 2014) or because features are
sampled less often when there are two relevant features
compared with one (Vul & Rich, 2010) currently
cannot be determined from this data set alone.

Furthermore, our result showing that participants
variably encode task-irrelevant information may relate
to the findings of Vogel, McCollough, and Machizawa
(2005), who found that higher working memory
capacity is correlated with differences in tendency to
filter out irrelevant objects. We demonstrate here that
variability in the tendency to filter out irrelevant
information also exists at the level of features within a
single object.

Conclusions

The results of the present experiment demonstrate
that task-irrelevant features of an attended object are
not entirely disregarded, nor are they represented at the
same level as relevant features. Instead, participants are
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able to report the irrelevant feature in a surprise test,
but with greatly varying levels of precision. When the
task-irrelevant feature became relevant following the
surprise test, its precision improved, but at the expense
of another task-relevant feature. These data challenge
strong object-based encoding theories, which do not
allow for variation in the storage of different features
within a stored object representation.

Keywords: visual working memory, delayed estima-
tion, visual attention

Acknowledgments

The authors thank the undergraduate students in the
lab for assisting with the experiment as well as Ronald
van den Berg and an anonymous reviewer for helpful
comments. All authors contributed to the analysis of
the data and to the writing and editing of the article.
GS designed the experiment and the visualizations.
This work was supported by NSF Grant BCS-1331073
awarded to BW. Data from this experiment can be
found at https://scholarsphere.psu.edu/collections/
qv33rwoof.

Commercial relationships: none.

Corresponding author: Garrett Swan.

Email: gsp.swan@ gmail.com.

Address: Department of Psychology, Pennsylvania
State University, University Park, PA, USA.

' But note that, in general, a characterization of
visual working memory capacity strictly in terms of
number of objects is incomplete (e.g., Alvarez &
Cavanagh, 2004; Hardman & Cowan, 2014; Ma,
Husain, & Bays, 2014).

2 All 175 participants were used to minimize the bias
induced by the subject exclusion process.

References

Akaike, H. (1974). A new look at the statistical model
identification. IEEE Transactions on Automatic
Control, 19, 716-723.

Alvarez, G. A., & Cavanagh, P. (2004). The capacity of
visual short-term memory is set both by visual
information load and by number of objects.
Psychological Science, 15, 106—-111.

Downloaded From: http://jov.arvojour nals.or g/pdfaccess.ashx?url=/data/Jour nals’JOV/934914/ on 04/18/2016


https://scholarsphere.psu.edu/collections/qv33rw66f
https://scholarsphere.psu.edu/collections/qv33rw66f

Journal of Vision (2016) 16(3):32, 1-12

Asplund, C. L., Todd, J. J., Snyder, A. P., Gilbert, C.
M., & Marois, R. (2010). Surprise-induced blind-
ness: A stimulus-driven attentional limit to con-
scious perception. Journal of Experimental

Psychology: Human Perception and Performance,
36, 1372-1381.

Awh, E., Vogel, E. K., & Oh, S. H. (2006). Interactions
between attention and working memory. Neurosci-
ence, 139, 201-208.

Baddeley, A. (2003). Working memory: Looking back
and looking forward. Nature Reviews Neuroscience,
4, 829-839.

Bays, P. M. (2014). Noise in neural populations
accounts for errors in working memory. The
Journal of Neuroscience, 34, 3632-3645.

Bays, P. M., Catalao, R. F., & Husain, M. (2009). The
precision of visual working memory is set by
allocation of a shared resource. Journal of Vision,
9(10):7, 1-11, doi:10.1167/9.10.7. [PubMed]
[Article]

Bays, P. M., Gorgoraptis, N., Wee, N., Marshall, L., &
Husain, M. (2011). Temporal dynamics of encod-
ing, storage, and reallocation of visual working
memory. Journal of Vision, 11(10):6, 1-15, doi:10.
1167/11.10.6. [PubMed] [Article]

Bays, P. M., Wu, E. Y., & Husain, M. (2011). Storage
and binding of object features in visual working
memory. Neuropsychologia, 49, 1622—-1631.

Brady, T. F., & Alvarez, G. A. (2011). Hierarchical
encoding in visual working memory: Ensemble
statistics bias memory for individual items. Psy-
chological Science, 22, 384-392.

Brady, T. F., Konkle, T., & Alvarez, G. A. (2011). A
review of visual memory capacity: Beyond indi-
vidual items and toward structured representations.
Journal of Vision, 11(5):4, 1-34, doi:10.1167/11.5.4.
[PubMed] [Article]

Brady, T. F., Konkle, T., Gill, J., Oliva, A., & Alvarez,
G. A. (2013). Visual long-term memory has the
same limit on fidelity as visual working memory.
Psychological Science, 24, 981-990.

Brainard, D. H. (1997). The Psychophysics Toolbox.
Spatial Vision, 10, 433—436.

Chen, H., & Wyble, B. (2015). The location but not the
attributes of visual cues are automatically encoded
into working memory. Vision Research, 107, 76-85.

Chun, M. M. (2011). Visual working memory as visual
attention sustained internally over time. Neuro-
psychologia, 49, 1407-1409.

Cowan, N. (2001). The magical number 4 in short-term
memory: A reconsideration of mental storage
capacity. Behavioral and Brain Science, 24, 87-114.

Swan, Collins, & Wyble "

Eitam, B., Shoval, R., & Yeshurun, Y. (2015). Seeing
without knowing: Task relevance dissociates be-
tween visual awareness and recognition. Annals of
the New York Academy of Sciences, 1339, 125-137.

Eitam, B., Yeshurun, Y., & Hassan, K. (2013). Blinded
by irrelevance: Pure irrelevance induced “blind-
ness.” Journal of Experimental Psychology: Human
Perception and Performance, 39, 611-615.

Fan, J. E., & Turk-Browne, N. B. (2013). Internal
attention to features in visual short-term memory
guides object learning. Cognition, 129, 292-308.

Fisher, N. 1. (1995). Statistical analysis of circular data.
Cambridge, United Kingdom: Cambridge Univer-
sity Press.

Fougnie, D., & Alvarez, G. A. (2011). Object features
fail independently in visual working memory:
Evidence for a probabilistic feature-store model.
Journal of Vision, 11(12):3, 1-12, doi:10.1167/11.12.
3. [PubMed] [Article]

Fougnie, D., Asplund, C. L., & Marois, R. (2010).
What are the units of storage in visual working
memory? Journal of Vision, 10(12):27, 1-11, doi:10.
1167/10.12.27. [PubMed] [Article]

Gao, T., Gao, Z., Li, J., Sun, Z., & Shen, M. (2011).
The perceptual root of object-based storage: An
interactive model of perception and visual working
memory. Journal of Experimental Psychology:
Human Perception and Performance, 37, 1803-1823.

Gao, Z., Li, J., Liang, J., Chen, H., Yin, J., & Shen, M.
(2009). Storing fine detailed information in visual
working memory—Evidence from event-related
potentials. Journal of Vision, 9(7):17, 1-12, doi:10.
1167/9.7.17. [PubMed] [Article]

Hardman, K. O., & Cowan, N. (2015). Remembering
complex objects in visual working memory: Do
capacity limits restrict objects or features? Journal
of Experimental Psychology: Learning, Memory,
and Cognition, 41, 325-347.

Horstmann, G. (2005). Attentional capture by an
unaccounted color singleton depends on expecta-
tion discrepancy. Journal of Experimental Psychol-
ogy: Human Perception and Performance, 31, 1039—
1060.

Horstmann, G. (2006). The time course of intended and
unintended allocation of attention. Psychological
Research, 70, 13-25.

Kahneman, D., Treisman, A., & Gibbs, B. J. (1992).
The reviewing of object files: Object-specific inte-
gration of information. Cognitive Psychology, 24,
175-219.

Keshvari, S., van den Berg, R., & Ma, W. J. (2013). No

Downloaded From: http://jov.arvojour nals.or g/pdfaccess.ashx?url=/data/Jour nals’JOV/934914/ on 04/18/2016


http://www.ncbi.nlm.nih.gov/pubmed/19810788
http://jov.arvojournals.org/article.aspx?articleid=2122354
http://www.ncbi.nlm.nih.gov/pubmed/21911739
http://jov.arvojournals.org/article.aspx?articleid=2121222
http://www.ncbi.nlm.nih.gov/pubmed/21617025
http://jov.arvojournals.org/article.aspx?articleid=2191865
http://www.ncbi.nlm.nih.gov/pubmed/21980189
http://jov.arvojournals.org/article.aspx?articleid=2121177
http://www.ncbi.nlm.nih.gov/pubmed/21047759
http://jov.arvojournals.org/article.aspx?articleid=2191840
http://www.ncbi.nlm.nih.gov/pubmed/19761332
http://jov.arvojournals.org/article.aspx?articleid=2122301

Journal of Vision (2016) 16(3):32, 1-12

evidence for an item limit in change detection.
PLoS Computational Biology, 9(2), €1002927.

Luck, S. J., & Vogel, E. K. (1997). The capacity of
visual working memory for features and conjunc-
tions. Nature, 390, 279-281.

Luck, S. J., & Vogel, E. K. (2013). Visual working
memory capacity: From psychophysics and neuro-
biology to individual differences. Trends in Cogni-
tive Sciences, 17, 391-400.

Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing
concepts of working memory. Nature Neuroscience,
17, 347-356.

Marshall, L., & Bays, P. M. (2013). Obligatory
encoding of task-irrelevant features depletes work-

ing memory resources. Journal of Vision, 13(2):21,
1-13, doi:10.1167/13.2.21. [PubMed] [Article]

McAdams, C. J., & Maunsell, J. H. (1999). Effects of
attention on orientation-tuning functions of single

neurons in macaque cortical area V4. The Journal
of Neuroscience, 19, 431-441.

Oberauer, K., & Eichenberger, S. (2013). Visual
working memory declines when more features must

be remembered for each object. Memory &
Cognition, 41, 1212-1227.

Olson, I. R., & Jiang, Y. (2002). Is visual short-term
memory object based? Rejection of the “strong-
object” hypothesis. Perception & Psychophysics, 64,
1055-1067.

Palmer, J., Boston, B., & Moore, C. M. (2015). Limited
capacity for memory tasks with multiple features
within a single object. Attention, Perception, &
Psychophysics, 77, 1488—1499.

Pelli, D. G. (1997). The VideoToolbox software for
visual psychophysics: Transforming numbers into
movies. Spatial Vision, 10, 437-442.

Prinzmetal, W., Amiri, H., Allen, K., & Edwards, T.
(1998). Phenomenology of attention: 1. Color,
location, orientation, and spatial frequency. Jour-
nal of Experimental Psychology: Human Perception
and Performance, 24, 261-282.

Rock, I., Linnett, C. M., Grant, P., & Mack, A. (1992).
Perception without attention: Results of a new
method. Cognitive Psychology, 24, 502—-534.

Serences, J. T., Ester, E. F., Vogel, E. K., & Awh, E.
(2009). Stimulus-specific delay activity in human
primary visual cortex. Psychological Science, 20,
207-214.

Simons, D. J., & Chabris, C. F. (1999). Gorillas in our
midst: Sustained inattentional blindness for dy-
namic events. Perception, 28, 1059-1074.

Swan, Collins, & Wyble 12

Stroop, J. R. (1935). Studies of interference in serial
verbal reactions. Journal of Experimental Psychol-
ogy, 18, 643—-662.

Suchow, J. W., Brady, T. F., Fougnie, D., & Alvarez,
G. A. (2013). Modeling visual working memory
with the MemToolbox. Journal of Vision, 13(10):9,
1-8, doi:10.1167/13.10.9. [PubMed] [Article]

Swan, G., & Wyble, B. (2014). The binding pool: A
model of shared neural resources for distinct items
in visual working memory. Attention, Perception, &
Psychophysics, 76, 2136-2157.

Triesch, J., Ballard, D. H., Hayhoe, M. M., & Sullivan,
B. T. (2003). What you see is what you need.
Journal of Vision, 3(1):9, 86-94, doi:10.1167/3.1.9.
[PubMed] [Article]

van den Berg, R., Shin, H., Chou, W. C., George, R., &
Ma, W. J. (2012). Variability in encoding precision
accounts for visual short-term memory limitations.

Proceedings of the National Academy of Sciences,
USA, 109, 8780-8785.

Vogel, E. K., McCollough, A. W., & Machizawa, M.
G. (2005). Neural measures reveal individual

differences in controlling access to working mem-
ory. Nature, 438, 500-503.

Vul, E., & Rich, A. N. (2010). Independent sampling of
features enables conscious perception of bound
objects. Psychological Science, 21, 1168—1175.

Wheeler, M. E., & Treisman, A. M. (2002). Binding in
short-term visual memory. Journal of Experimental
Psychology: General, 131, 48—64.

Wilken, P., & Ma, W. J. (2004). A detection theory
account of change detection. Journal of Vision,
4(12):11, 1120-1135, doi:10.1167/4.12.11.
[PubMed] [Article]

Woodman, G. F., & Vogel, E. K. (2008). Selective
storage and maintenance of an object’s features in

visual working memory. Psychonomic Bulletin and
Review, 15, 223-229.

Xu, Y. (2010). The neural fate of task-irrelevant
features in object-based processing. The Journal of
Neuroscience, 30, 14020-14028.

Yin, J., Zhou, J., Xu, H., Liang, J., Gao, Z., & Shen,
M. (2012). Does high memory load kick task-
irrelevant information out of visual working
memory? Psychonomic Bulletin and Review, 19,
218-224.

Zhang, W., & Luck, S. J. (2008). Discrete fixed-
resolution representations in visual working mem-
ory. Nature, 453, 233-235.

Downloaded From: http://jov.arvojour nals.or g/pdfaccess.ashx?url=/data/Jour nals’JOV/934914/ on 04/18/2016


http://www.ncbi.nlm.nih.gov/pubmed/23420420
http://jov.arvojournals.org/article.aspx?articleid=2193814
http://www.ncbi.nlm.nih.gov/pubmed/23962734
http://jov.arvojournals.org/article.aspx?articleid=2121492
http://www.ncbi.nlm.nih.gov/pubmed/12678628
http://jov.arvojournals.org/article.aspx?articleid=2158160
http://www.ncbi.nlm.nih.gov/pubmed/15669916
http://jov.arvojournals.org/article.aspx?articleid=2192647

	Introduction
	f01
	Experiment design and analysis
	f02
	Results
	e01
	e02
	f03
	e03
	f04
	f05
	e04
	f06
	f07
	Discussion
	Conclusions
	n1
	n2
	Akaike1
	Alvarez1
	Asplund1
	Awh1
	Baddeley1
	Bays1
	Bays2
	Bays3
	Bays4
	Brady1
	Brady2
	Brady3
	Brainard1
	Chen1
	Chun1
	Cowan1
	Eitam1
	Eitam2
	Fan1
	Fisher1
	Fougnie1
	Fougnie2
	Gao1
	Gao2
	Hardman1
	Horstmann1
	Horstmann2
	Kahneman1
	Keshvari1
	Luck1
	Luck2
	Ma1
	Marshall1
	McAdams1
	Oberauer1
	Olson1
	Palmer1
	Pelli1
	Prinzmetal1
	Rock1
	Serences1
	Simons1
	Stroop1
	Suchow1
	Swan1
	Triesch1
	vandenBerg1
	Vogel1
	Vul1
	Wheeler1
	Wilken1
	Woodman1
	Xu1
	Yin1
	Zhang1

